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Relating natural image statistics to patterns
of response covariability in macaque
primary visual cortex

Amirhossein Farzmahdi 1,4 , Adam Kohn1,2,3 & Ruben Coen-Cagli 1,2,3

Determining how the brain encodes sensory information requires under-
standing the structure of cortical activity, including how its variability is shared
among neurons. The role of this covariability in cortical representations of
natural visual inputs is unclear. Here, we adopt the neural sampling hypothesis
and extend a well-established generative model of image statistics, to explain
pairwise activity as representing joint probabilistic inferences about latent
features of images. According to the theory, variability reflects uncertainty
about those latent features. In natural images, some sources of uncertainty are
shared between features and lead to covariability between neurons, whereas
other independent sources contribute to private variability. Our analysis
shows that spatial context in images reduces shared uncertainty for over-
lapping features, whereas it reduces independent uncertainty for non-
overlapping features. As a result, themodel predicts that increasing the size of
an image reduces correlations for pairs with overlapping receptive fields and
increases correlations for pairs with offset receptive fields. This predictionwas
confirmed by recordings from male macaque primary visual cortex (V1). Our
study establishes a precise connection between V1 correlations and natural
scene statistics, suggesting patterns of covariability are a feature of probabil-
istic representations of scenes.

Understanding how visual cortical neurons represent natural stimuli is
amajor goal in neuroscience. Progress in this field has been supported
by normative theories that predict how neurons ought to encode
visual stimuli to achieve computational objectives such as coding
efficiency, probabilistic inference, or object recognition1–3, and by
related data-analytic tools4.

While traditional approaches have often focused on explaining
single-neuron mean firing rates, there is a growing recognition that
the cortical neural code for images is distributed across large
populations. Therefore, understanding the encoding of scenes
requires understanding the interactions between neurons5,6. Whether
theories developed for single-neuron responses to natural images

generalize to the structure of neural population activity remains lar-
gely unexplored.

Prominent studies of the neural encoding of parametric simple
visual stimuli have demonstrated the importance of neural interac-
tions, placing much emphasis on trial-by-trial variability shared
between neurons, i.e., correlations between the activity fluctuations of
pairs of neurons responding to a fixed stimulus (often termed noise
correlations, spike-count correlations, or rsc

7). This is because corre-
lated variability can determine the information encoded by a neural
population about parametric stimuli8–19. However, extending this fra-
mework to complex natural inputs encompassing multiple features is
challenging20.
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To address these problems, here we extend a well-established
theory of V1 encoding, to generate newpredictions for V1 covariability in
response to natural stimuli and test themwith recordings frommacaque
V1. The theory posits that the goal of V1 neurons is to represent prob-
abilistic inferences about low-level features of images21. Testing the
theory requires specifying a generative model of the statistics of those
features in natural images, and, given a visual input, inverting the gen-
erative model to compute a posterior distribution over the latent fea-
tures. In line with much prior work22–27 (see ref. 28 for review), here we
consider a simple generative model known as Gaussian Scale Mixture
(GSM29). The key assumption of this model is that a global ‘modulator’
variable modulates multiple features and thus introduces statistical
dependence among them (details in Fig. 1A and in Results). The second
element of the theory is an assumption about how neural activity
represents the inferences.We adopt the sampling hypothesis, according
towhich instantaneous activity of aneuron represents a sample fromthe
posterior distribution20,25. It follows that the across-trial mean and var-
iance of the activity of a neuron, given an input stimulus, reflect the
mean and variance (uncertainty) of the posterior distribution (Fig. 1C).

Past work strongly supports this theoretical framework—which
combines a GSM model of natural image statistics with the sampling
hypothesis of neural representation—for explaining single neuron
activity2,23,25–27,30,31 including that driven by natural images2,27, and there
is evidence that the theory may reproduce properties of V1
covariability25,26,32–35. Building on this foundation, we focus on how
response covariability is modulated by imagemanipulations for which
the single-neuron theory has made predictions that were confirmed
experimentally: nonlinear contextual modulation, or modulation of
the response to a target stimulus by presentation of a surrounding
stimulus36–40. We hypothesize that inferences about pairs of features
should bemodulated by spatial context in images, because contextual
stimuli reveal new information about a stimulus and therefore reduce
uncertainty. Importantly, our analysis of natural image statistics indi-
cates multiple sources of uncertainty: Some sources are shared
between features (Fig. 1B, top) and thus induce correlated variability,
whereas others are independent (Fig. 1B, bottom) and thus induce
independent variability. We further show that similar and overlapping
features tend to have shared uncertainty, hence pairwise correlations
between neurons encoding those features are reduced as the image is
made larger by adding spatial context. Conversely, larger images
reduce independent variability, thus increasing correlations, between
neurons with less overlapping features. This prediction is strongly
supported by our analysis of macaque V1 responses to natural images.

Results
Pairwise models with shared versus independent latent mod-
ulators to study V1 correlations
To study the relationship between pairwise neural responses and
image statistics under the theory of probabilistic inference, we
implemented pairwise Gaussian Scale Mixtures (GSM) generative
models of image statistics. We then inverted the generative model to
infer theposterior distributions of latent variables. Lastly, to establish a
link between the inferred distribution and neural activity, we adopted
the neural sampling hypothesis (Fig. 1).

The GSM model for a single neuron (Fig. 1A) assumes that an
image is generated from linear combinations of localized oriented
features (each feature is like an elementary image: a wavelet with a
specific orientation and spatial frequency), each weighted by a Gaus-
sian coefficient (a latent variable g). A globalmodulator variable (latent
variable v) scales multiplicatively that weighted sum, and noise (η) is
added, resulting in the observed variable x (related to the image by a
linear transformation; see Methods). This is a mathematical descrip-
tion of how an imagemay be generated: each choice of specific values
for the coefficients, the modulator, and the noise, will generate one
specific image.

The problem faced by V1 neurons, we hypothesize, is the inverse
problem: when an image is presented (the visual input), we assume
that V1 neurons infer the values of the coefficients that are likely to
have generated that particular image. More precisely, we hypothesize
that a V1 neuron encodes the posterior distribution of the Gaussian
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Fig. 1 | Overview of the theory: pairwise GSM models for neural covariability.
AA summary of the generative process of the Gaussian scalemixture (GSM)model.
The linear transform of the raw image pixel values, denoted as x, results from
combining local oriented features (in pink and cyan), each weighted by a Gaussian
coefficient g. These weighted features (denoted `filter set') are then collectively
scaled by a global modulator v and the result is corrupted by additive Gaussian
noise, denoted as η. B The schematic illustrates the generative process of the
pairwise shared and independent GSMmodels. Each distinct filter set refers to one
neuron. In the top row, a single global modulator, v, is shared between the two
model neurons (the green patch in the right equation), defining the shared mod-
ulator model (shared GSM). Conversely, in the bottom row, the independent
modulator model (independent GSM) is characterized by individual global mod-
ulators, v1 and v2, highlighted by twodistinct purple color patches for each neuron.
C In our theory, a pair ofmodel neurons encodes the joint posterior distributionsof
their features (left). According to the neural sampling hypothesis, neural activity
corresponds to samples from this joint posterior distribution. Multiple samples
correspond to independent measurements over time or stimulus repeti-
tions (right).
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coefficient (g) associated with a target feature (Eqs. (1) and (2) in
Methods).

Given our focus onpairwise V1 activity, our primary objective is to
estimate the joint posterior probability distribution of the features
encoded by two neurons, given an image, denoted as p(gc1, gc2∣x). The
numbers indicate the model neuron, and c denotes centered features
(gc1: pink, gc2: beige in Fig. 1B, left). The joint responses of neuron pairs
to the same image are interpreted as samples from such a distribution
(Fig. 1C). To construct this distribution, we therefore considered pairs
of model neurons similar to the above, except that we allowed for two
distinct structures. In the first structure, termed the shared pairwise
GSM, the global modulator is shared between all the coefficients of
both model neurons (v; Fig. 1B, top). In the second structure, termed
the independent pairwise GSM, two independent modulators are used,
one for each neuron (v1, v2; Fig. 1B, bottom).

The use of these two distinct GSMs was motivated by observations
on the statistical properties of natural images, which often exhibit non-
stationarities: namely, statistical dependencies can vary across regions.
Due to these non-stationarities, features within the same visual object
tend to be statistically dependent, influenced by common underlying
factors. These dependencies are effectively captured by a GSM model
with a single global modulator that scales all features of an object. In
contrast, features belonging to different visual objects are generally
more independent, as they are influenced by separate factors31. For such
cases, using independentmodulators that scale each feature separately,
better captures the statistical independence of those features.

For the pairwise application considered here, we reasoned that
joint inferences about pairs of features (represented by pairs of

neurons) should account for whether these features are a priori more
likely to be part of the same or different visual objects. This prior
probability depends on factors such as similarity (e.g., orientation
preference) and spatial proximity. Intuitively, features that are similar
and located close together aremore likely to belong to the sameobject
and are thus better modeled with a shared global modulator. Con-
versely, dissimilar or distant features are more likely to belong to dif-
ferent objects, making independent modulators more suitable. By
incorporating this reasoning into our model, we aim to capture the
statistical dependencies (or lack thereof) between different features in
natural images. Next, we tested this intuition formally.

Image statistics are captured by shared or independent mod-
ulators, depending on the proximity and similarity of image
features
To study how well the shared and independent GSM capture image
statistics, we computed the likelihood of each natural image under
eachmodel, and compared themodelsby their log-likelihood ratio.We
implemented the GSM for each neuron similarly to past work on sur-
roundmodulation, i.e., with a group of bandpass linear filters covering
a reference location and eight surrounding locations (Fig. 2A; details in
Methods). Themodel parameters, i.e., the prior covariancematrices of
the local latent features,were estimatedwithmomentmatching41 from
an ensemble of 10,000 natural images from the ImageNet validation
set42. This moment-matched covariance matrix is practically equiva-
lent to the maximum likelihood estimate (MLE), and thus the resulting
marginal likelihoods in Fig. 2 can be interpreted as approximating
maximummarginal likelihoods. The log-likelihood was measured on a
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Fig. 2 | Optimal pairwise GSM structure for natural images depends on recep-
tive fields distance and dissimilarity. A Schematic representation of five example
pairs of model neurons. Each neuron is represented by a set of filters covering the
receptive field center and surround.When computingmodel responses to a natural
image, one reference neuron is kept at the central location and horizontal orien-
tation (pink), while the orientation and location of the other are changed (beige).
Δθ denotes the difference in orientation preferences, which are indicated above
each one of the example pairs (ranging from 10° to 90°). B Leftmost panel: we
considered neural pairs with one reference neuron (pink circle) and the second
neuron centered at each position on the grid of yellow circles (horizontal and
vertical displacements from the reference neuron ranging from −3 to 3 times the
RF). Right three panels: The graphs compare the log-likelihood of natural images
under the shared versus independent GSM models. Log-likelihood ratios, mean
over testing images, are shown for each pair of locations and for three example Δθ

values (reference at 90° and second neuron at 80, 50, and0° from left to right). The
log-likelihood ratio quantifies which pairwise GSM model better captures the sta-
tistics of natural images (positive values, in green, indicate that the shared mod-
ulator is better, and negative in purple, that the independent modulator is better).
For each pair of neurons, the GSM parameters (i.e., covariance matrices) were
optimized using 10,000 natural and 10,000 white noise training images, and the
likelihood was estimated on a non-overlapping set of 10,000 test images (see
Methods). The three locations outlined in black correspond to the example pairs
outlined in panel (A). Positive values (shared modulator better) are cropped to the
same range as negative values for better visualization. When the receptive fields
overlap, the ratio is distinctly positive, indicating that the sharedmodulator model
captures image statistics better. In contrast, with non-overlapping receptive fields,
the ratio turns mostly negative, particularly for larger values of Δθ, suggesting that
the independent GSM model more effectively captures image statistics.
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separate, randomly selected subset of 10,000 natural images from the
ImageNet test set. For a given test image, the likelihood value of each
model indicates the effectiveness of themodels in capturing the image
statistics (computed as in ref. 31). To investigate the covariability
between two model neurons, we systematically varied their tuning
similarity (relative orientation preference) and proximity (reference
location).

Figure 2A provides examples of neuron pairs. We considered pairs
ranging from highly similar to orthogonal orientation preference, and
from perfect spatial overlap to a center-to-center separation of three
times the receptive field (RF) size (Fig. 2B, left). The likelihood ratios for
three example orientation differences (10°, 50°, and 90°) across 81
locations are shown in Fig. 2B. The complete set of 9 orientation dif-
ferences is depicted in Supplementary Fig. 1. The 2D likelihood maps
reveal that the shared modulator model largely outperforms the inde-
pendent modulator model when two neurons have overlapping recep-
tive fields and similar orientations (as shown in Fig. 2B, where green
squares occupy a much larger portion of the grid on the left compared
to the right). Conversely, the independent GSM has a higher likelihood
with non-overlapping RFs with different orientations, although the
numerical difference appears less prominent (Fig. 2B, right).

Pairwise models and image statistics predict when surround
stimulation suppresses or facilitates correlations
We next examined the predictions of the GSM models for pairwise
neural activity. First, we analyzed the shared and independent GSM
models applied to an example natural image windowed either by a
small or large aperture (i.e., at two sizes). To illustrate the shared GSM,
we considered a pair of model neurons with overlapping RFs (Δx = 0
and Δy =0; Fig. 3A inset) with different orientation preferences (Δθ =
40°). For the independent GSM,we considered a non-overlapping pair
(Δx = 2.25 × RF and Δy =0; Fig. 3C inset) with identical orientation
preferences to those of the shared GSM.

We next asked if the covariability between neuron pairs differs for
small and large images, focusing on correlations (often referred to as
spike count correlations, noise correlations, or rsc, which measure the
Pearson correlation of spike count responses across repeated identical
stimuli) as is commonly done to measure changes in covariability
beyond those due to changes in single-neuron variance. The shared
and independent models exhibited opposite effects of surround
modulation on correlations. Specifically, increasing stimulus size
decreased correlations from0.96 to 0.78 in the sharedmodel (Fig. 3B),
but increased it from 0.08 to 0.28 in the independent model (Fig. 3D;
see Discussion and Supplementary Fig. 2 for considerations about the
magnitude of correlations in the simulations versus typical V1 data).

The opposite contextual modulation effects in the models stem
from the different sources of uncertainty about the latent features gc1
and gc2. This uncertainty is determined by both the global mod-
ulators and additive noise, as depicted in Fig. 3E, F. In the shared
model, uncertainty about the global modulator is the main source of
shared variability among neurons. In contrast, in the independent
model, distinct global modulators induce private variability for each
neuron. In both models, the input noise (depicted in the brown
sections of Fig. 3E, F) contributes to shared variability simply
reflecting overlap between filters (see Methods). Importantly, the
contribution of the additive noise to variability is not affected by
stimulus size (Supplementary Fig. 3). As stimulus size increases, the
shared model exhibits reduced uncertainty linked to the shared
modulator, thereby decreasing shared variability and, consequently,
correlations. Conversely, the independent model typically shows a
decrease in independent variability, thereby allowing the other
source of correlations (i.e., the additive noise) to become more evi-
dent. The schematics in Fig. 3E, F illustrate how changing the image
size affects uncertainty regarding the latent features. In Supple-
mentary Fig. 4, we demonstrate this intuition more formally, to show

that these contextual modulations of uncertainty result from mar-
ginalization of the global modulators (which is required for correct
probabilistic inference of the g latent features) and are absent when
marginalization is neglected.

Having illustrated the effects for one example image, we then
simulated responses of neuron pairs with varying degrees of tuning
similarity, to a diverse set of 500 natural images in the BSD500 image
set43 (a subset of these images were used in the experimental record-
ings), distinct from those used to train the GSMs. We found that cor-
relations depended on tuning similarity in both models, as has often
been reported in V17,44–46. However, the modulation by large stimuli
was opposite for the twomodels, showing primarily suppression in the
shared modulator, and primarily facilitation in the independent mod-
ulator. Additionally, the modulation was stronger for pairs with more
similar tuning. Figure 3G demonstrates these effects for three example
images (see Supplementary Fig. 5 for more example images), and in
aggregate across 500 images.

Surround stimulation modulates correlations in macaque V1
consistent with GSM predictions
We tested the predictions derived above, in V1 neuronal population
responses recorded in anesthetized macaque monkeys. According to
our theory, the responses of a neuron pair should sample the posterior
of the better model of image statistics for that pair. If the visual inputs
are best captured by the shared modulator model, increasing image
size should reduce correlations. If inputs are best captured by the
independent modulator, increasing image size should result in stron-
ger (more positive) correlations (Fig. 3).

Becauseour analysis of image statistics indicated that the distance
between RFs of the model neurons is the primary factor determining
which model better captures input statistics (Fig. 2), we assigned the
recorded neurons into two groups, depending on their RFs distance
from the center of the stimulus (details in Methods). The first group,
termed centered neurons, encompassed neurons whose RFs overlap
the stimulus (distance between RF center and stimulus center < 1°).
The second group, termed off-centered, comprised neurons whose RF
falls outside the small image but inside the large image area. According
to our analysis of image statistics, pairs of two centered neurons
(centered pairs, Fig. 4A, top-left; similar to the model neural pair
exemplified in Fig. 3E) are expected to follow the shared modulator
prediction, whereas pairs comprising one centered and one off-
centered neuron (mixed pairs, Fig. 4A, bottom-left; similar to the
model neural pair of Fig. 3F) should follow the independent mod-
ulator. Since we are studying the effects of surround modulation on
correlations, we did not analyze the off-centered–off-centered pairs
because they are not driven by small stimuli.

Figure 4A displays findings from one example session. In this
experiment, 270 natural image patches in two sizes were used: one
windowed to fit the average RF (1°) and the other extending to the RF
surround (6.7°). In centered pairs, we observed significant suppression
of correlations by the larger image (ncent= 50 neurons, ncase = 41,043
pairs and images; mean correlations: small images, 0.15; large images,
0.10; p <0.001), whereas in mixed pairs there was significant facilita-
tion of correlations (ncent= 50 neurons, noffcent= 49 neurons, ncase =
5654 pairs and images; mean correlations: small images, 0.04; large
images, 0.08; p <0.001).

This verified that the results for example session were a robust
feature of V1 correlations (Fig. 4B). We analyzed data recorded with
planar arrays (Utah) across 8 sessions in three animals, and one addi-
tional session using Neuropixels. Planar arrays allowed us to study
multiple diverse combinations of spatial RFs, whereas Neuropixels
afforded greater control in defining centered and off-centered neu-
rons. In the aggregate data set we observed suppression of correla-
tions by larger images for centered pairs (mean correlations and
standard errors: small images, 0.1088 and 1.6 × 10−4; large images,
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0.0885 and 1.44 × 10−4; p <0.001) and facilitation for mixed pairs
(mean correlations and standard errors: small images, 0.0472 and
4.5 × 10−4; large images, 0.0515 and 3.5 × 10−4; p <0.001). The same
result held in each one of the individual sessions (Supplementary
Figs. 6 and 7). We verified the robustness of our results to changes in
the thresholds defining centered and mixed pairs (Supplementary
Figs. 6, 7, 8, 9). Lastly, we confirmed that the suppression and

facilitation effects were statistically significant on an image-by-image
basis (Supplementary Fig. 10).

We were concerned that the modulation of correlations might
simply follow firing rate effects, given the well-known downward
estimation bias of correlations at low spike counts (see7 for review).
Specifically, for centered pairs, the suppression of correlations might
reflect that firing rates decrease with larger images (Supplementary

Fig. 3 | Different GSM structures predict surround suppression and facilitation
of correlations. A, C Joint posterior distributions of the features (gc1 and gc2)
encoded by a pair of neurons for one example natural image. The contours
represent isoprobability regions at levels of 0.05, 0.25, 0.45, 0.65, and 0.85. Sur-
round modulation decreases the posterior covariance for large images (orange) in
the sharedmodulatormodel (A) and increases it in the independentmodulator (C).
B, D Neuronal responses are a transformed version of samples from the posterior
distributions (details in Methods). Responses were simulated across 1000 trials.
Trial-by-trial covariance reflect the posterior covariance of gc1 and gc2. E, F The
schematic highlights two primary sources of covariability: the global modulator
and the input noise. In both models, the contribution of input noise does not
change between small and large images (brown). However, the uncertainty asso-
ciated with the global modulator decreases with the addition of image context in

larger images. Consequently, this reduction decreases the shared variability (v) in
the shared modulator model (E), but it decreases the independent variability (v1
and v2) in the independent modulator model (F). G Correlation coefficient (rsc)
between two model neurons, calculated from 2000 trials (i.e., samples from the
posterior). Top row: shared modulator for neural pairs with perfectly overlapping
RFs; bottom row: independent modulator for neural pairs with non-overlapping
center pairs (consistent with the statistics of natural images, see Fig. 2B). The first
three columns from the left show rsc for three example images, and the rightmost
column averages across 500 images (shaded areas correspond to the 99% con-
fidence intervals). Blue and orange lines correspond to small and large images,
respectively. See also Supplementary Fig. 2 for how the effects depend on the
parameters of the GSM models.
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Fig. 11). For mixed pairs, enhanced correlations might reflect that the
off-center neurons are not driven by small images, and so their firing
rate increases substantially with large images. However, for these
mixed pairs, large images also generally suppress the firing rate of the
centered neurons (Supplementary Fig. 11, and ref. 2), resulting in a
weaker net effect on the firing rate of the pair.

Nevertheless, to testwhether themodulationof correlationswas a
trivial consequence of altered responsivity47, we conducted a mean-
matching analysis. We computed mean spike counts averaged across
trials and across each neural pair, for each image and size. We then
constructed two histograms across images, separately for small and
large sizes. Finally, we resampled those histograms so that the mean
for the small image matched the mean for the large image; see Meth-
ods. This analysis indicated that the observed correlations change
were not due to differences in spike count means (Fig. 4, insets; and
Supplementary Fig. 12).

Surround modulation of correlations depends on tuning simi-
larity and pairwise distance
Model simulations revealed a direct relationship between correlations
and the similarity of the orientation preference of the two neurons, for
both shared and independent GSM (Fig. 3). This is consistent with the
well-known empirical relation between tuning similarity (sometimes
termed signal correlation or rsignal) and correlations, typically mea-
sured with simple stimuli45. We confirmed that a similar relationship
exists in our data, even when wemeasured tuning dissimilarity (i.e., 1 -

tuning similarity) based on responses to natural images (details in
Methods; Fig. 5A, left for one example session and Supplementary
Fig. 13 for all sessions). Consistent with previous observations45, we
found an inverse relation between correlations and RF distance
(Fig. 5A, right). These relationships held separately for large and small
images and for centered and mixed pairs. Additionally, similar to our
simulations, the mixed pairs had lower correlations than the centered
pairs across both small and large images, a difference likely due to the
different inter-neuron distances among the centered and mixed
groups.

With the broad range of RF distances and tuning similarities
measured, we can exhaustively test how surround modulation of
correlations depends on these parameters. Specifically, we studied the
relationship between surround modulation of correlations, rsignal, and
distance in the pairwise models and V1 data (Fig. 6). We binned the
pairs by rsignal computed from natural images and the proximity of
their receptive fields. In each bin, we determined if the shared or
independentGSMcapturednatural image statistics better (as in Fig. 2),
and computed the modulation of correlations using the best model
per bin (Fig. 6A, B). Figure 6B illustrates the relationship between
correlations, rsignal, and distance, spanning 127,500 instances (17 dis-
tances, 15 differences in orientation preference, and 500 natural ima-
ges). Neuron pairswith overlapping filters and high response similarity
across natural images showed suppressed correlations, while those
with non-overlapping filters and lower response similarity exhibited
enhanced correlations. The shared and independent models alone do

Fig. 4 | Surround modulation of correlations in V1 aligns with model predic-
tions. A Left column: Light yellow circles depict the centers of the neurons'
receptive fields in one recording session with a Utah array; black circles highlight
one example `centered' pair. Small images (blue circle) were presented at 1° and
large images (orange circle) extended across 6.7°. ncent and noffcent denote the total
number of neurons centered on the stimulus or offset by more than 1.2°. Top row:
black circles indicate a `centered' pair (i.e., both neurons are centered on the
image); bottom row: black circles indicate a `mixed' pair (i.e., one neuron is cen-
tered on the image, the other is offset). Right column: correlations distributions for
small (blue) and large (orange) images of centered pairs (top) and mixed pairs
(bottom). The triangles represent themeans of the distributions. For centeredpairs
(top), the mean correlation for small images significantly exceeds that for large
images (p <0.001; two-sided t-test against the null hypothesis of no difference). For
mixedpairs (bottom) themean for large images is significantly higher than for small

images (p <0.001; two-sided t-test against the null hypothesis of no difference). To
ensure that observed differences in correlations were not influenced by varying
spike counts between small and large images, we specifically analyzed cases with
mean-matched spike count distributions. In both rows, the inset illustrates the
distribution of bootstrapped mean rsc following mean-matching analysis. B Each
symbol represents the average rsc across cases (pairs and images) in a recording
session. Circles represent centered pairs, while triangles indicate mixed pairs.
Colors correspond to the results from four animals (a1 to a4) across nine sessions.
See Supplementary Table 1 for detailed session information. The error bars
represent the standard error of the mean. The insets show the distribution of
bootstrapped mean rsc from a mean-matching analysis conducted across all ses-
sions. The background shading indicates the predictions of the shared (green) or
independent (purple) GSM models.
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not account for the observed shifts between suppression and facilita-
tion of correlations in the data (Supplementary Figs. 14 and 15).

Figure 6C outlines the relationship between correlations, rsignal, and
distance based onV1 data from all recording sessions (354,498 pairs and
images). A linear regression model with the z-scores of rsignal and dis-
tance aspredictors, explainedapproximately 38.3%of the variance in the
modulation of correlations by image size (R-squared =0.383). The linear
regression coefficients were 0.15 (p=0.027) for rsignal and −0.57
(p<0.001) for distance (seeMethods for details). This analysis indicates
that distance influences the modulation of correlations more strongly
than tuning dissimilarity: correlations were on average suppressed by
larger images for most neuron pairs with receptive field distance within
1° (blue pairs), and enhanced for more distant pairs (red regions). The
effect of tuning dissimilarity was weaker but also notable, with pairs
exhibiting high tuning similarity experiencing greater modulation of
correlations by image size. Subsequent analyses with reduced models,
excluding either rsignal or distance, underscored their respective con-
tributions. Omitting distance decreased R-squared by 0.3, emphasizing
its substantial influence on the modulation of correlations. Conversely,
excluding rsignal resulted in a smaller reduction in R-squared by 0.02,
indicating a lower, albeit significant, impact.

In summary, in both themodel andV1data,RFdistance influenced
surround modulation of correlations more than tuning similarity. In
particular, the pairwise GSM with a global modulator variable shared
between features at short distances—centered pairs in V1—suppresses
correlations. Whereas independent modulator variables are a better
model of V1 correlations for mixed pairs.

Discussion
We have proposed a normative theory of V1 encoding of natural visual
inputs, and empirically tested predictions for modulation of V1

covariability by spatial context (as manipulated by image size). We
provide two main contributions. First, our work substantially extends
the theory of neural sampling in the GSM model, leading to a new
prediction for surround modulation of covariability. Specifically, our
generative models of image statistics predict that surround stimuli
reduce shared uncertainty, and thus suppress covariablity, for pairs of
neurons with spatially overlapping RFs and similar tuning. Conversely,
surroundmodulation strengthens covariability for neurons with offset
RFs (Figs. 2 and 3). Notably, these predictions are parameter-free,
derived from a hypothesis regarding the computational goals of V1
populations and an analysis of image statistics. Our second contribu-
tion is an empirical test of these predictions in V1 responses to natural
images. We find both surround suppression and facilitation of V1
correlations, depending on RF distance and tuning similarity as pre-
dicted by our theory (Figs. 4, 5, 6).

Probabilistic inference calibrated to non-stationary image sta-
tistics requires diverse functional interactions in V1
Prior work with GSMs showed that single-neuron V1 activity reflects
probabilistic inferences about the image feature encoded by the
neuron24–28 and also captured some aspects of interactions between V1
neurons24–26. Our study goes substantially beyond that past work,
through a detailed analysis of natural image statistics with surprising
implications for V1 covariability.

By building explicit pairwise GSM models, we showed that simply
extending theGSM to pairs ofmodel neurons is not sufficient to capture
the statistics of natural images. This is because the assumption made in
those prior studies, that a shared global modulator variable scales the
local features encoded by all neurons, breaks downwhen those features
are sufficiently distant or different (Fig. 2). This implies that a GSM with
independent modulators is a better generative model for neuron pairs
encoding distant or different features. This conclusion is consistent with
earlier work in computer vision29,48 and computational neuroscience22,31

capturing the non-stationary statistics of natural images: these comprise
multiple homogeneous regions that are statistically different from each
other (e.g., the textures corresponding to the fur of an animal and to the
vegetation in the background).

This observation about image statistics led to the key new insight
of this paper: because increasing image size reduces uncertainty due
to the modulator, and thus reduces response variability in sampling-
based representations25,27,28, our pairwise models predicted opposite
effects on covariability depending onwhether themodulator is shared
or not between neurons (Fig. 3). Previous V1 models most closely
related to ours24–26, may only capture the suppression of correlations
by spatial context, not the facilitation, because thosemodels assumed
shared modulators only. We confirmed that these results require that
the probabilistic inference about image features takes into account the
modulators in the GSM (i.e., marginalization, see Methods; Supple-
mentary Fig. 4).

Here we have assumed that a given pair of neurons will always
follow the predictions of either the shared or independent GSM, based
on the learned prior statistics of the inputs received by that pair. With
this simplifying assumption, our model predictions hold on average
across presentations of many natural images (Figs. 4 and 5). However,
functional interactions in V1 could be more flexible, allowing for
switching between shared and independent modulators on an image-
by-image basis. This is supported by earlier work that showed how
probabilistic mixtures of GSMs capture flexible surround modulation
of single-neuron firing rate2,23,31. Extending our pairwise model to
probabilistic mixture models could thus provide finer-grained pre-
dictions for V1 responses to individual images, and new insights into
the features of visual inputs that control functional interactions in V1.

We note that there is a quantitative difference in magnitude of
correlations and surround modulation, between the pairwise model
and V1 data. These differences may stem from the diverse pool of

A

B

centered pairs

mixed pairs

small image
large image

co
rre

la
tio

ns
 (r

sc
)

co
rre

la
tio

ns
 (r

sc
)

0 0.3 0.6 0.9 1.2
0

0.1

0.2

0.3

ncase = 41,043

tuning dissimilarity RF distance (deg)
0 0.4 0.8 1.2 1.6

0

0.1

0.2

0.3

0 0.3 0.6 0.9 1.2
0

0.1

0.2

0.3

ncase = 5,654

0 0.4 0.8 1.2 1.6
0

0.1

0.2

0.3

RF distance (deg)tuning dissimilarity

<

<

Fig. 5 | Correlations are modulated by both tuning similarity and the RF dis-
tance betweenpairs of neurons. ACentered pairs. Left: pairswere binned by their
tuning dissimilarity (equal-sized bins). Circles denote average correlations (ordi-
nate) and average tuning dissimilarity (abscissa) per bin, across small images (blue)
or large images (orange). Error bars denote s.e.m. Right: pairs were binned by the
distance between the RF center of the two neurons. Same plotting convention as in
the left panel. B Mixed pairs. Same plotting conventions as in (A).

Article https://doi.org/10.1038/s41467-025-62086-1

Nature Communications |         (2025) 16:6757 7

www.nature.com/naturecommunications


tuning preferences in V1 compared to the more limited range in the
pairwisemodel. Additionally, the scaling of shared additivenoise in the
model, η, is arbitrary and could be adjusted to match the V1 data
better. Here our primary goal was not quantitative model fitting, but
rather to generate and test a qualitative normative prediction. We
verified that altering the scale of shared additive noise separately for
overlapping and non-overlapping pairs did not affect the qualitative
prediction, though it could influence the magnitude of correlations
(Supplementary Fig. 2).

Relation to stochastic divisive normalization and implications
for circuit mechanisms of V1 covariability
Our GSM model, and those of others, is closely related to divisive
normalization49. Due to the multiplicative structure of the GSM,
inference involves division of neural responses by an estimate of the
modulator variable2. Importantly, when the modulator is shared
between twoneurons, their denominators are correlated, butwhen the
modulators are independent the denominators are uncorrelated.
Descriptive models of stochastic divisive normalization28,50,51, when
extended to pairwise data52, indicate that normalization generally
suppresses correlations when the normalization signals are correlated,
whereas it enhances correlations otherwise. Therefore, our observa-
tions could be described by how surround stimuli recruit normal-
ization signals with different properties depending on the relationship
between the neurons’ RFs.

The relation tonormalization alsopoints to anavenue to study the
mechanisms implementing the probabilistic inference we have pro-
posed. In particular, two related but distinct recurrent circuit models
of V1 dynamics capture normalization. The supralinear stabilized net-
work (SSN) captures key phenomena attributed to normalization28

including surround modulation53. In stochastic versions of the SSN,
recurrent dynamics shapes the noise54, and the recurrence can be
tuned to modulate variability as required by probabilistic inference in
the GSM26. The ORGaNICs architecture55 is designed to implement
divisive normalization exactly at the steady state, and its stochastic
variants also capture modulations of variability56. It is plausible that
image-computable versions of both frameworks will capture the sur-
round suppression of covariability that we observe here for

overlapping RFs. The facilitation we observe for non-overlapping pairs
may require additional tuning of the recurrent connectivity, to gen-
erate ensembles of neurons that effectively share normalization sig-
nals within each ensemble but not across ensembles. Lastly, as noted
above, it is possible that interactions between a given pair of neurons
could flexibly switch from shared to independent modulators
depending on the visual input. We speculate that such flexibilitymight
be achieved by feedback processes that dynamically refine the tuning
of recurrent interactions based on the image context.

Modulation of correlations by other stimulus features and
attention
We have focused on spatial context in natural images because it has a
prominent role in understanding the relation between image statistics
and V1 encoding, and so it offers a strong test of our theory. Other
stimulus factors also modulate correlations including, notably, sti-
mulus contrast44. Past work has shown that inference in the GSM
predicts contrast tuning of firing rate and quenching of variability28,
and lower correlations at higher contrast for overlapping RFs26.
Experimentally, there is also a well-known interaction between stimu-
lus contrast and surround suppression, namely reduced surround
suppression at lower contrast36,37. This has been explained by the
flexible engagement of the surround in a probabilistic mixture of GSM
models23. If a similar flexibility affects also pairwise interactions, the
modulations of correlations we have reported here may be reduced in
magnitude at low contrast. This prediction remains to be tested.

Another study conceptually related to ours invoked probabilistic
inference to understand pairwise V1 response statistics to synthetic
textures and natural images34. They showed that patterns of correla-
tions depend on high-level statistics, more than on low-level statistics.
They explained the finding as reflecting that probabilistic inferences
about high-level features (computed by higher visual cortex and fed
back to V1) set the context for the inferences in V1. Different from our
work, ref. 34 did not model natural image statistics or pairwise neural
responses explicitly, and therefore did not make detailed predictions
about what aspects of images enhance or suppress correlations.
Trainable models for hierarchical inference35 that reproduce the data
of ref. 34 could be applied to the stimulus manipulations we have
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Fig. 6 | Surround suppression or facilitation of V1 correlations is predicted by
the optimal pairwise GSM structure for natural images. A We binned model
neuron pairs by their signal correlations and RF distances (center-to-center dis-
tance), and computed the average log-likelihood ratio per bin for shared versus
independent pairwise GSM across 10,000 natural images from the ImageNet test
set (see Methods for details). The green (purple) entries indicate conditions where
the shared (independent) GSM model is the better model of image statistics on
average. We observe a sharp transition at specific RF distances, where the overlap
between the centers and surrounds of two model neuron filters is reduced. B We
binned model neuron pairs as in (A) and computed the modulation of correlations

per bin for 500natural images, i.e., the difference in rsc for small imagesminus large
images. For pairs with overlapping receptive fields and high tuning similarity,
correlations are often suppressed (blue). In contrast, for pairswith non-overlapping
receptive fields and low tuning similarity, correlations are often facilitated (red).
CWe binned V1 neural pairs and computed the modulation of correlations per bin
as inpanel (B).Only pairswith at least oneneuronRF centered on the stimuluswere
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RFs are separated by less than 1° (blue) and facilitated otherwise (red), consistent
with the model prediction.
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considered. More broadly, other studies also support the view that
perceptual inferences about task-relevant latent variables jointly
modulate V1 responses, including correlations, via feedback32,33,57–59.
Therefore, in addition to the recurrent mechanisms we discussed
above, top-down feedback could contribute to the diversemodulation
of V1 correlations by image size.

Endogenous attention is also known to modulate correlations in
the visual cortex. Seminal studies reported primarily suppression of
correlations by attention12,60. Subsequent work observed also facilita-
tion depending on where attention is directed and whether the neu-
rons provide evidence for the same or different perceptual choices61.
Interestingly, stochastic divisive normalization has also been used to
describe the diversity of attentional effects62, similar to our proposal,
although they did not offer a normative theory as we have done.

Despite these similarities, the theory we have developed is not
directly applicable to attentional modulation, because the GSM mod-
els we considered includes only factors related to the visual inputs. In
other words, in our models, neural variability encodes uncertainty and
uncertainty reflects exclusively the local and global latent variables of
the generative model of images.

Our experimental data were collected from anesthetized mon-
keys, tominimize eyemovements and ensuremore stable retinal input
across trials, reducing stimulus-induced variability. It is possible that
the effects reported here might differ in awake animals, where atten-
tional fluctuations and feedback may influence correlations and
center-surround modulation. We note however, that surround mod-
ulation of single-neuron response mean and variability with natural
images is qualitatively similar and consistent with GSM predictions in
both awake fixating and anesthetized animals27.

Implications for population-level functional interactions
We have focused on pairwise interactions, and our analysis of image
statistics and correlations versus distance is relative to a reference RF
location. An interesting direction for future work is to extend our
modeling to populations of RFs that uniformly cover a larger area of
the visual field. Our finding that neighboring RFs share the same
modulator, and distant RFs use independent modulators, has several
implications for larger, spatially distributed populations. First, to
satisfy the constraint posed by pairwise image statistics, RFs should be
organized into spatially compact ensembles, sharing the modulator
within but not across ensembles. Second, more than two modulators
would be necessary if spatially disconnected ensembles use indepen-
dent modulators. Third, the coordination of ensembles by sharing
latent modulators could offer a functional explanation for the widely
observed low-dimensional population activity (assuming a smaller
number of modulators than neurons). Fourth, this clustered organi-
zation would act as a strong spatial prior for image segmentation.

Methods
The pairwise Gaussian scale mixture (GSM) generative model
Our pairwisemodel adopts the neural sampling hypothesis as outlined
by ref. 25: the instantaneous activity of two neurons represents sam-
ples from the joint posterior distribution of the features they encode.
Thus, the covariability between neurons reflects the statistical
dependence between those latent features.

To calculate the joint posterior distribution for a visual stimulus,
we extended the Gaussian ScaleMixture (GSM)model—originally used
to explain the statistics of single neuron responses23,25,27—to pairs of
neurons. Specifically, our starting point was the model previously
developed for surround modulation. We defined the observable vari-
ables by applying a set of oriented filters (similar to V1 receptive fields,
RF) to grayscale circular image patches. The input vector, x, has 36
dimensions, corresponding to two groups of 18 filters, each group
representing one model neuron. These filters, designed based on the
steerable pyramid decomposition of the image63, cover both the

center and the surround of each neuron’s RF. The 18 filters in each set
share a common orientation, and are further divided into two subsets
of 9 filters with even and odd phases, respectively, forming a quad-
rature pair. The nine filters in each subset include one representing the
center of the neuron’s RF and eight uniformly distributed around the
center, representing the RF’s surround (see Fig. 1A). Our results are
robust across different filter scales by using multiple levels of the
steerable pyramid (Supplementary Fig. 16). The motivation behind
choosing common orientations for center and surround filters is
twofold. First, several studies64–66 demonstrated that neurons in V1
exhibit enhanced modulation when stimuli inside the RF and in the
surround are similarly oriented, indicating orientation-tuned surround
modulation. Second, we adopted this arrangement in our previous
single-neuron model to capture the tuning of response variability27.
Thus, our choice ensures that the model we use here captures known
single-neuron surround modulation of both mean spike count and
response variability (Supplementary Fig. 17). Nonetheless, because
altering the orientation preferences of the surround filters can lead to
different degrees of modulation depending on the structure of the
visual input, we conducted additional simulations to verify the gen-
erality of our results: when averaging across a variety of natural ima-
ges, the qualitative predictions for how correlations aremodulated by
stimulus size remain consistent regardless of the tuning of surround
filters (Supplementary Fig. 18). We assumed that all surround neurons
have identical, translated receptive fields. While fitting the receptive
fields to images would not substantially alter our predictions—since
the GSM framework captures the key statistical dependencies in nat-
ural images—we acknowledge that this constraint may limit the
diversity of receptive field properties represented and thus the quan-
titative match to the data.

To infer local latent features, g, from an observation x, our model
neurons invert the generative process of the GSM. In the shared GSM,
the generative process involves the product of a global modulator v
that influences all local features g and the addition of Gaussian noiseη:

xij = vg ij +ηij ,

i 2 f1, 2g,
j 2 f1, . . . , 18g

g � N 0, Σshared
g

� �
,

v � Weibullð2,
ffiffiffi
2

p
Þ,

η � N 0, Σnoise

� �
ð1Þ

where i and j index the neuron and the filter, respectively.
In the independent GSM, there are two independent modulators,

v1 and v2, each scaling the 18 local features of the corresponding
neuron:

xij = vi g ij +ηij ,

i 2 f1, 2g,
j 2 f1, . . . , 18g

g � N 0, Σindependent
g

� �
,

vi � Weibullð2,
ffiffiffi
2

p
Þ,

η � N 0, Σnoise

� �
ð2Þ

We assumed as usual in the GSM, that both g and η are multi-
variate normal variables. Their distributions have a mean of 0 and are
characterized by covariance matrices Σg for g and Σnoise for η. In the
independent GSM, the covariance Σindependent

g is assumed block-diag-
onal, i.e., no prior correlations between the filters of the two neurons
(although there can be correlations between the filters representing
each individual neuron). Conversely, Σshared

g is not assumed to have
block-diagonal structure. The variable v is assumed to follow aWeibull
distribution, with its scale and shape parameters set to 2 and

ffiffiffi
2

p
,

respectively. This choice is equivalent to the Rayleigh prior used in
ref. 31, but is more readily implemented in the sampler (detailed in the
next subsection). The multiplicative interaction between g and v
implies that changes to theWeibull parameterswould be equivalent to
modifying the scale of Σg.
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Model training details
To find the noise covariance matrix (Σnoise), we generated 10,000 syn-
theticwhite noise images. Startingwith a normalGaussiandistribution,
we shifted and scaled the values to range from zero to one, targeting a
mean of approximately 0.5 and a standard deviation of 0.1.

Next,weapplied two sets offilters, eachcorresponding to amodel
neuron, to the noise images and measured the empirical covariance
among the filter outputs. In our model simulations, we introduced a
free parameter to selectively adjust the covariance between these two
filter sets. This adjustment preserved the variance and covariance
within each filter set but scaled the covariance between the sets. By
manipulating this parameter, we could change the levels of shared
additive noise affecting the interaction between the two model neu-
rons (Supplementary Fig. 2).

To estimate the covariance matrices Σshared
g and Σindependent

g , we
considered 10,000 natural images: similarly to the noise images
described above, we adjusted the pixel values of natural images to the
range [0 1], and we then scaled them so that the signal-to-noise ratio
between the natural images and noise images was 4.8.We then applied
the filters to these natural images and we measured the covariance
among the filter outputs to obtain Σshared

g . Next, Σindependent
g was derived

by extracting covariances between each model neuron’s filters from
the full matrix Σshared

g while setting the across-neuron blocks to zero
(insets in Supplementary Fig. 19). The natural images were derived by
manipulating 2500 natural images from the ILSVRC15 dataset42. As
in ref. 2, each original image was rotated four times in 45-degree
increments, to obtain similar empirical distributions of activations for
filters of different orientations and improve numerical stability. While
this reduces typical cardinal biases of natural images, it does not affect
our qualitative results because here we addressed effects that depend
only on the orientation difference between neurons, not on their
absolute orientation preference.

Relating probabilistic inference in the pairwise GSM to neural
activity
We used Bayesian inference to estimate the posterior distribution of
latent variables of the pairwise GSM. Specifically, because we assumed
that neural activity represents samples from the posterior distribution
over local features g, our objective was to compute the posterior
p(g∣stimulus), which involves marginalization over v (note that we do
not test, nor exclude, whether there is a circuit element, e.g., a neuron
subtype or a specific circuit motif, tasked with explicitly representing
inferences about v). There is no exact analytical solution for this dis-
tribution for the generative model with additive noise (Eq. (1), (2)).
Therefore, we adopted the No-U-Turn Sampler67, an extension of
Hamiltonian Monte Carlo sampling, implemented via the PyMC3
probabilistic programming package68.

We converted samples from the posterior into spike counts for
model neurons following prior work on neural sampling25,27. We used a
phase-invariant (i.e., complex cell) response model:

r =α b gc
+ c+ + b gc

�c+
� � ð3Þ

where gc
+ and gc

� denote the latent features corresponding to the
two filters with complementary phases in the center of the receptive
field (RF). The notation ⌊.⌋+ represents the positive part of the
response, rectifying the signal. In our analyses of model neuron
responses we used r as the instantaneous neural activity. As detailed in
ref. 27 r can be rounded directly to a spike count without additional
spiking noise, as sampling-basedmodels offer a normative explanation
for variability. The coefficient α serves as a heuristic adjustment to
ensure that the neuronal responses are kept within the range of
experimentallymeasured spike counts. In Fig. 6,we introduce anoffset
to samples of g before converting them to spike counts. This
adjustment helps mitigate the clipping effect caused by the rectifier,

particularly for smaller images, but does not change the qualitative
effect (Supplementary Fig. 20).

To measure the covariability between two model neurons, we
calculated the trial-by-trial correlation coefficient between the
responses of two model neurons (denoted rsc in Figs. 3, 4). We used
2000 samples per input stimulus, drawn from the posterior across 4
independent chains (sequences in Markov Chain Monte Carlo simu-
lations). Another 2000 samples are used for tuning before being dis-
carded to adjust step sizes, scalings, etc. Employing multiple chains
ensures a comprehensive examination of the parameter space and
enhances the reliability of our Bayesian inference outcomes68.

Estimating likelihood of natural images in pairwise GSMmodels
To establish normative predictions about experimental covariability
measurements, we assessed whether shared or independent GSM
more accurately captures natural image statistics. This involved
training the covariance matrices Σshared

g and Σindependent
g with natural

images, for neuron pairs with a large range of differences in spatial
distance and orientation preference (Fig. 2). We then determined the
likelihood of a test set of natural images (described above in Model
training details) under each model configuration—shared or indepen-
dent—for each filter set (using MLE covariance estimates yielding
likelihoods consistent with moment-based results, Supplementary
Fig. 21). The likelihood was computed as in31.

By comparing the likelihood, we assessed which configuration of
the GSMmodel, shared or independent, more accurately captured the
underlying natural image statistics.

Defining tuning similarity within the pairwise GSM model
To measure how correlations change with tuning similarity and dis-
tances in the pairwise GSM model for qualitative comparison with
neural data (Fig. 6), we first assessed if the shared or independent GSM
best capture image statistics for each pair of model neurons, and we
measured the correlationsmodulation of the selectedmodel. Next, we
binned model neurons by the distance of their filters and by their
tuning similarity (i.e., rsignal measured across 100 natural images that
stimulate the horizontal filter). Lastly, in each bin, we computed the
average modulation of correlations. Using tuning similarity instead of
orientation preference (as in Fig. 2) for direct qualitative comparison
with V1 data accounted better for cases where two model neurons
share an orientation preference but respond to different parts of
the image.

Animal preparation and data collection
We recorded from 4 anesthetized adult male monkeys (Macaca fasci-
cularis), using established anesthesia and experimental protocols. In
short, anesthesia was induced with ketamine (10mg/kg), maintained
with isoflurane (1.5–2.5% in 95% O2) during surgery, and switched to
sufentanil (6–18 μg/kg per hour, adjusted as needed) for the recording
session. We took several measures to ensure the stability and well-
being of the subjects, including regulating the temperature and con-
tinuouslymonitoring vital signs suchas EEG, ECG, bloodpressure, end-
tidal PCO2, and airway pressure. Vecuroniumbromide (0.15mg/kg per
hour) was used to minimize eye movements. In the primary visual
cortex (V1) of three animals, we implanted 10 × 10multielectrode Utah
arrays with 400μm spacing and 1mm length. A subset of the data we
analyzed (7 sessions from two monkeys) have been reported in ref. 2.

In one animal, we used Neuropixel Phase 3B probes, secured on a
custom 3D-printed holder. We used 4 sharpened probes, inserted
without guide tubes. After-insertion, the craniotomy was sealed to
preserve cortical integrity. The recordings, covering 384 channels
across a 7.68mm range, were made using SpikeGLX software. Spike
sorting was performed with Kilosort 2.5, which clusters units based on
waveformshape, andwasmanually refinedwith Phy software to ensure
that the waveform belongs to single neurons.
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The number of recorded units ranged from 22 to 53 for centered
neurons and from 24 to 190 for off-centered neurons.

All procedures were approved by the Albert Einstein College of
Medicine and followed the guidelines in the United States Public
Health Service Guide for the Care and Use of Laboratory Animals.

Visual stimuli and presentation
We used a calibrated CRT monitor and custom software for stimulus
displays, featuring 1024 × 768 pixels resolution and a 100-Hz refresh
rate, with a mean luminance of approximately 40 cd/m−2. The monitor
was positioned 110 cm away from the animal for Utah array recordings
and 50 cm for Neuropixel recordings. To map the spatial receptive
field (RF) of each neuron, we used small gratings (0.5° in diameter, in
four orientations, presented for 250ms) across various positions. The
RF center for each neuronwas identified as the peak location on a two-
dimensional Gaussian fit to the spatial activity map2,69.

Surround modulation was assessed using grayscale natural ima-
ges, as outlined in prior research2. In summary, for 8 Utah array
recording sessions, we displayed 270 distinct natural images (210 in
one session) in two sizes (1° and 6.7°). Most images had a natural main
orientation (defined by analyzing the histogram of orientation energy
as in ref. 2); those images were presented in four variants, each rotated
in 45° increments, to increase the likelihood of activating the recorded
neurons. Images were shown for 105ms, followed by a 210ms blank
screen interval, in a pseudo-random sequence. Images were inter-
leaved in pseudo-random order and each image was presented 20
times (seven sessions from ref. 2) or 50 times (one session). Stimuli
were displayed within a circular aperture against a gray backdrop that
matched the average luminance.

For Neuropixel recordings, we chose a subset of the BSD500
images, which included 48 natural images presented at two sizes (1°
and 6.4°). These images were presented in a pseudo-random order for
250 ms and each was repeated 150 times.

Characterization of neuronal responses and inclusion criteria
We counted spikes in a time window as long as the image presenta-
tion, shifted by 50 ms (35 ms in one session) to account for typical
response onset delays. Neurons were categorized into two groups:
“centered” neurons whose receptive fields were within a 1° of
the stimulus center, and “off-center” neurons whose receptive fields
were more than 1.2° away from the stimulus center. For off-center
neurons, we additionally ensured that the neurons’ receptive fields
were covered by the larger stimuli. Our results are robust to the
specific definition of “centered” and “off-centered” (Supplementary
Figs. 8 and 9).

We included in the analysis only the responsive neurons for each
stimulus, as follows. We computed the baseline activity level as the
spike count during spontaneous activity, averaged over all trials. We
then identifiedneuronswhose stimulus-evoked activity exceededboth
one standard deviation above the baseline and a minimum value of
0.1 spikes/trial. Centered neurons were deemed responsive if they
responded to small stimuli above the baseline threshold. Conversely,
off-center neurons were deemed responsive if they responded to large
stimuli above the threshold, and additionally did not respond to small
stimuli above the baseline threshold to ensure the small stimulus did
not encroach on their RF. In the Neuropixel data, we observed overall
lower activity levels compared to the Utah array recordings. Therefore
we lowered the responsivity threshold to 0.1 standard deviations
above the spontaneous activity. Due to the absence of blank interval
trials and the presence of stimulus-driven responses, we lowered the
baseline threshold to a maximum of 0.1. Our findings did not change
qualitatively when we changed the values of these thresholds, as
shown in Supplementary Figs. 6, 7, 9.

To evaluate correlations (also known as noise correlations or
spike count correlations, denoted by rsc in the figures), we computed

Pearson correlation coefficients between pairs of neurons across trials
(repeated presentations of the same image).

Statistical analysis
In our analysis, we employed a two-sided t-test to determine if corre-
lations significantly differed between small and large images. To avoid
inflating significance due to the fact that the entries of an estimated
noisecovariancematrix arenot independent, weproceeded as follows.
In each sessionwithN recorded neurons, for each imagewe computed
the correlation matrix for the Mimage neurons included for that parti-
cular image (see inclusion criteria above). We then randomly sub-
sampled Mimage × K pairs—where K is the estimated dimensionality of
the covariance matrix based on the low-rank approximation from
factor analysis70—from the full set of Mimage(Mimage − 1)/2 possible
neuron pairs. Lastly, we aggregated the sampled pairs across images
and sessions to compute a p-value. This procedure was repeated 1000
times, and we report the average p-values across these repetitions.
(See also Supplementary Table 1 for session-by-session significance).

To ensure that the observed differences in correlations were not
simply due to differences in the average spike counts elicited by small
versus large images,we conducted amean-matching analysis, as follows.
First, for each image and each size (small and large), we computed the
across-trial mean response (spike count) for each neuron. Second, for
each pair of neurons, we computed the average mean response of the
pair, for each image and size. Third, we constructed the histograms of
neural-pair-averaged mean responses, across all pairs and images,
separately for small images and for large images. We then selected
samples from these two histograms to ensure the means of the neural-
pair-averaged responses were matching. Following this, we examined
the correlations for these mean-matched cases. To evaluate the sig-
nificance of any observed differences between the two groups, we
applied apaired sample, two-sided t-test, basedon thenull hypothesis of
no difference between them. We also confirmed that our qualitative
results on surround modulation of correlations are unchanged when
using a regularized covariance estimator70 instead of mean-matching.

We employed linear regression to elucidate how surround mod-
ulation of correlations depends on tuning dissimilarity (1-rsignal) and
proximity (distance) in Fig. 6. The analysis included 154 samples,
selected from 300 bins each containing at least 15 data points,
ensuring robust representation. All variables were z-scored to stan-
dardize measures, enabling comparability across different scales.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from seven sessions are publicly available through the CRCNS
data sharing platform at https://crcns.org/data-sets/vc/pvc-8. Data
from the remaining two sessions are available at https://doi.org/10.
5281/zenodo.15596406. The natural images used to train and test the
GSM models are publicly available in the ImageNet database (https://
image-net.org/challenges/LSVRC/2015/) and the BSDS500 dataset
(https://github.com/BIDS/BSDS500). Source data are provided with
this paper.

Code availability
Code used for model simulations and data analysis is available at
https://github.com/CoenCagli-Lab/2025-NatureCommunications-
Farzmahdi-et-al-code.
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