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Abstract Primates can recognize objects despite 3D geometric variations such as in-depth 
rotations. The computational mechanisms that give rise to such invariances are yet to be fully 
understood. A curious case of partial invariance occurs in the macaque face-patch AL and in fully 
connected layers of deep convolutional networks in which neurons respond similarly to mirror-
symmetric views (e.g. left and right profiles). Why does this tuning develop? Here, we propose a 
simple learning-driven explanation for mirror-symmetric viewpoint tuning. We show that mirror-
symmetric viewpoint tuning for faces emerges in the fully connected layers of convolutional deep 
neural networks trained on object recognition tasks, even when the training dataset does not 
include faces. First, using 3D objects rendered from multiple views as test stimuli, we demonstrate 
that mirror-symmetric viewpoint tuning in convolutional neural network models is not unique to 
faces: it emerges for multiple object categories with bilateral symmetry. Second, we show why this 
invariance emerges in the models. Learning to discriminate among bilaterally symmetric object cate-
gories induces reflection-equivariant intermediate representations. AL-like mirror-symmetric tuning is 
achieved when such equivariant responses are spatially pooled by downstream units with sufficiently 
large receptive fields. These results explain how mirror-symmetric viewpoint tuning can emerge in 
neural networks, providing a theory of how they might emerge in the primate brain. Our theory 
predicts that mirror-symmetric viewpoint tuning can emerge as a consequence of exposure to bilat-
erally symmetric objects beyond the category of faces, and that it can generalize beyond previously 
experienced object categories.

Editor's evaluation
This computational study is a valuable empirical investigation into the common trait of neurons in 
brains and artificial neural networks: responding effectively to both objects and their mirror images 
and it focuses on uncovering conditions that lead to mirror symmetry in visual networks and the 
evidence convincingly demonstrates that learning contributes to expanding mirror symmetry tuning, 
given its presence in the data. Additionally, the paper delves into the transformation of face patches 
in primate visual hierarchy, shifting from view specificity to mirror symmetry to view invariance. It 
empirically analyzes factors behind similar effects in many network architectures, and key claims 
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highlight the emergence of invariances in architectures with spatial pooling, driven by learning 
bilateral symmetry discrimination and importantly, these effects extend beyond faces, suggesting 
broader relevance.

Introduction
Primates can recognize objects robustly despite considerable image variation. Although we experi-
ence object recognition as immediate and effortless, the process involves a large portion of cortex 
and considerable metabolic cost (Laughlin et al., 1998), and determining the neural mechanisms and 
computational principles that enable this ability remains a major neuroscientific challenge. One partic-
ular object category, faces, offers an especially useful window into how the visual cortex transforms 
retinal signals to object representations. The macaque brain contains a network of interconnected 
areas devoted to the processing of faces. This network, the face-patch system, forms a subsystem 
of the inferotemporal (IT) cortex (Tsao et al., 2006; Moeller et al., 2008; Freiwald and Tsao, 2010; 
Hesse and Tsao, 2020). Neurons across the network show response selectivity for faces, but are orga-
nized in face patches–spatially and functionally distinct modules (Freiwald and Tsao, 2010; Freiwald, 
2020). These patches exhibit an information processing hierarchy from posterior to anterior areas. 
In the most posterior face-patch, PL (posterior lateral), neurons respond to face components (Issa 
and DiCarlo, 2012). In ML/MF (middle lateral/middle fundus), neurons respond to whole faces in a 
view-specific manner. In AL (anterior lateral), responses are still view-specific, but mostly reflection-
invariant. Finally in AM (anterior medial), neurons respond with sensitivity to the identity of the face, 
but in a view-invariant fashion (Freiwald and Tsao, 2010). The average neuronal response latencies 
increase across this particular sequence of stages (Freiwald and Tsao, 2010). Thus, it appears as if 
visual information is transformed across this hierarchy of representational stages in a way that facili-
tates the recognition of individual faces despite view variations.

What are the computational principles that give rise to the representational hierarchy evident in the 
face-patch system? Seeking potential answers to this and similar questions, neuroscientists have been 
increasingly turning to convolutional neural networks (CNNs) as baseline computational models of the 
primate ventral visual stream. Although CNNs lack essential features of the primate ventral stream, 
such as recurrent connectivity, they offer a simple hierarchical model of its feedforward cascade of 
linear-non-linear transformations. Feedforward CNNs remain among the best models for predicting 
mid- and high-level cortical representations of novel natural images within the first 100–200ms after 
stimulus onset (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014). Diverse CNN models, 
trained on tasks such as face identification (Farzmahdi et al., 2016; Abudarham et al., 2021; Raman 
and Hosoya, 2020), object recognition (Chang et al., 2021), inverse graphics (Yildirim et al., 2020), 
sparse coding (Hosoya and Hyvärinen, 2017), and unsupervised generative modeling Higgins et al., 
2021 have all been shown to replicate at least some aspects of face-patch system representations. 
Face-selective artificial neurons occur even in untrained CNNs (Baek et al., 2021a), and functional 
specialization between object and face representation emerges in CNNs trained on the dual task of 
recognizing objects and identifying faces (Dobs et al., 2022).

To better characterize and understand the computational mechanisms employed by the primate 
face-patch system and test whether the assumptions implemented by current CNN models are suffi-
cient for explaining its function, we should carefully inspect the particular representational motifs the 
face-patch system exhibits. One of the more salient and intriguing of these representational motifs 
is the mirror-symmetric viewpoint tuning in the AL face-patch (Freiwald and Tsao, 2010). Neurons in 
this region typically respond with different firing rates to varying views of a face (e.g. a lateral profile 
vs. a frontal view), but they respond with similar firing rates to views that are horizontal reflections of 
each other (e.g. left and right lateral profiles) (Freiwald and Tsao, 2010).

To date, two distinct computational models have been put forward as potential explanations 
for AL’s mirror-symmetric viewpoint tuning. Leibo and colleagues (Leibo et  al., 2017) considered 
unsupervised learning in an HMAX-like (Riesenhuber and Poggio, 1999) four-layer neural network 
exposed to a sequence of face images rotating in depth about a vertical axis. When the learning of the 
mapping from the complex-cell-like representation of the second layer to the penultimate layer was 
governed by Hebbian-like synaptic updates (Oja, 1982), approximating a principal components anal-
ysis (PCA) of the input images, the penultimate layer developed mirror-symmetric viewpoint tuning. 

https://doi.org/10.7554/eLife.90256
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In another modeling study, Yildirim and colleagues (Yildirim et al., 2020) trained a CNN to invert the 
rendering process of 3D faces, yielding a hierarchy of intermediate and high-level face representa-
tions. Mirror-symmetric viewpoint tuning emerged in an intermediate representation between two 
densely-connected transformations mapping 2.5D surface representations to high-level shape and 
texture face-space representations. Each of these two models (Leibo et al., 2017; Yildirim et al., 
2020) provides a plausible explanation of AL’s mirror-symmetric viewpoint tuning, but each requires 
particular assumptions about the architecture and learning conditions, raising the question whether 
a more general computational principle can provide a unifying account of the emergence of mirror-
symmetric viewpoint tuning.

Here, we propose a parsimonious, bottom-up explanation for the emergence of mirror-symmetric 
viewpoint tuning for faces (Figure 1). We find that learning to discriminate among bilaterally symmetric 
object categories promotes the learning of representations that are reflection-equivariant (i.e. they 
code a mirror image by a mirrored representation). Spatial pooling of the features, as occurs in the 
transition between the convolutional and fully connected layers in CNNs, then yields reflection-
invariant representations (i.e. these representations code a mirror image as they would code the 
original image). These reflection-invariant representations are not fully view-invariant: They are still 
tuned to particular views of faces (e.g. respond more to a half-profile than to a frontal view, or vice 
versa), but they do not discriminate between mirrored views. In other words, these representations 
exhibit mirror-symmetric viewpoint tuning (in the twin sense of the neuron responding equally to left-
right-reflected images and the tuning function, hence, being mirror-symmetric). We propose that the 
same computational principles may explain the emergence of mirror-symmetric viewpoint tuning in 
the primate face-patch system.

Our results further suggest that emergent reflection-invariant representations may also exist for 
non-face objects: the same training conditions give rise to CNN units that show mirror-symmetric 
tuning profiles for non-face objects that have a bilaterally symmetric structure. Extrapolating from 
CNNs back to primate brains, we predict AL-like mirror-symmetric viewpoint tuning in non-face-
specific visual regions that are parallel to AL in terms of the ventral stream representational hierarchy. 
Such tuning could be revealed by probing these regions with non-face objects that are bilaterally 
symmetric.

Results
Deep layers in CNNs exhibit mirror-symmetric viewpoint tuning to 
multiple object categories
We investigated whether reflection-invariant yet view-specific tuning emerges naturally in deep 
convolutional neural networks. To achieve this, we generated a diverse set of 3D objects rendered 
in multiple views. We evaluated the hidden-layer activations of an ImageNet-trained AlexNet CNN 
model (Krizhevsky et al., 2012) presented with nine views of each object exemplar. We constructed a 
9 × 9 representational dissimilarity matrix (RDM; Kriegeskorte et al., 2008) for each exemplar object 
and each CNN layer, summarizing the view tuning of the layer’s artificial neurons (‘units’) by means of 
between-view representational distances. The resulting RDMs revealed a progression throughout the 
CNN layers for objects with one or more symmetry planes: These objects induce mirror-symmetric 
RDMs in the deeper CNN layers (Figure 2A), reminiscent of the symmetric RDMs measured for face-
related responses in the macaque AL face-patch (Freiwald and Tsao, 2010). We defined a ‘mirror-
symmetric viewpoint tuning index’ to quantify the degree to which representations are view-selective 
yet reflection-invariant (Figure 2B). Consider a dissimilarity matrix ‍D ∈ Rn×n‍ where ‍Dj,k‍ denotes the 
distance between view ‍j‍ and view ‍k‍, ‍n‍ denotes the number of views. The RDM is symmetric about the 
main diagonal by definition: ‍Dj,k = Dk,j‍, independent of the tuning of the units. The views are ordered 
from left to right, such that ‍j‍ and ‍n + 1 − k‍ refer to horizontally reflected views. The mirror-symmetric 
viewpoint tuning index is defined as the Pearson linear correlation coefficient between ‍D‍ and its hori-
zontally flipped counterpart, ‍D

H
j,k = Dj,n+1−k‍ (Equation 1). Note that this is equivalent to the correla-

tion between vertically flipped RDMs, because of the symmetry of the RDMs about the diagonal: 

‍D
H
j,k = Dj,n+1−k = DV

j,k = Dn+1−j,k‍. This mirror-symmetric viewpoint tuning index is positive and large to 
the extent that the units are view-selective but reflection-invariant (like the neurons in macaque AL 

https://doi.org/10.7554/eLife.90256
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Figure 1. An overview of our claim: convolutional deep neural networks trained on discriminating among 
bilaterally symmetric object categories provide a parsimonious explanation for the mirror-symmetric viewpoint 
tuning of the macaque AL face-patch. (A) The macaque face-patch system. Face-selective cortical areas 
are highlighted in yellow. The areas ML, AL, and AM exhibit substantially different tuning proprieties when 
presented with faces of different head orientations (Freiwald and Tsao, 2010). These distinct tuning profiles 
are evident in population-level representational dissimilarity matrices (RDMs). From posterior to anterior face 

Figure 1 continued on next page
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face-patch). The index is near zero for units with view-invariant tuning (such as the AM face-patch), 
where the dissimilarities are all small and any variations are caused by noise.

Figure 2C displays the average mirror-symmetric viewpoint tuning index for each object category 
across AlexNet layers. Several categories—faces, chairs, airplanes, tools, and animals—elicited low 
(below 0.1) or even negative mirror-symmetric viewpoint tuning values throughout the convolutional 
layers, transitioning to considerably higher (above 0.6) values starting from the first fully connected 
layer (fc6). In contrast, for fruits and flowers, mirror-symmetric viewpoint tuning was low in both the 
convolutional and the fully connected layers. For cars and boats, mirror-symmetric viewpoint tuning 
was notably high already in the shallowest convolutional layer and remained so across the network’s 
layers. To explain these differences, we quantified the symmetry of the various 3D objects in each 
category by analyzing their 2D projections (Figure 2—figure supplement 1). We found that all of the 
categories that show high mirror-symmetric viewpoint tuning index in fully connected but not convo-
lutional layers have a single plane of symmetry. For example, the left and right halves of a human face 
are reflected versions of each other (Figure 2D). This 3D structure yields symmetric 2D projections 
only when the object is viewed frontally, thus hindering lower level mirror-symmetric viewpoint tuning. 
Cars and boats have two planes of symmetry: in addition to the symmetry between their left and right 
halves, there is an approximate symmetry between their back and front halves. The quintessential 
example of such quadrilateral symmetry would be a Volkswagen Beetle viewed from the outside. Such 
3D structure enables mirror-symmetric viewpoint tuning even for lower-level representations, such 
as those in the convolutional layers. Fruits and flowers exhibit radial symmetry but lack discernible 
symmetry planes, a characteristic that impedes viewpoint tuning altogether.

However, for an untrained AlexNet, the mirror-symmetric viewpoint tuning index remains rela-
tively constant across the layers (Figure 2—figure supplement 2A). Statistically contrasting mirror-
symmetric viewpoint tuning between a trained and untrained AlexNet demonstrates that the leap in 
mirror-symmetric viewpoint tuning in fc6 is training-dependent (Figure 2—figure supplement 2B).

Shallow and deep convolutional neural network models with varied architectures and objective 
functions replicate the emergence of mirror-symmetric viewpoint tuning (Figure 2—figure supple-
ment 3). These models include VGG16 (Simonyan and Zisserman, 2015), ‘VGGFace’ network 
(trained on face identification) (Parkhi et al., 2015), EIG (Yildirim et al., 2020), HMAX (Riesenhuber 
and Poggio, 1999), ResNet50 (He et al., 2016), ConvNeXt (Liu et al., 2022). In all these convolu-
tional networks, the mirror-symmetric viewpoint tuning index peaks at the fully-connected or average 
pooling layers. ViT (Dosovitskiy et al., 2021), featuring a non-convolutional architecture, does not 
exhibit this feature (Figure 2—figure supplement 5).

Why does the transition to the fully connected layers induce mirror-symmetric viewpoint tuning 
for bilaterally symmetric objects? One potential explanation is that the learned weights that map the 
last convolutional representation (pool5) to the first fully connected layer (fc6) combine the pool5 
activations in a specific pattern that induces mirror-symmetric viewpoint tuning. However, replacing 
fc6 with spatial global average pooling (collapsing each pool5 feature map into a scalar activation) 
yields a representation with very similar mirror-symmetric viewpoint tuning levels (Figure 2—figure 

areas, invariance to viewpoints gradually increases: from view-tuned in ML, through mirror-symmetric in AL, to 
view-invariant identity selectivity in AM (neural data from Freiwald and Tsao, 2010). (B) Training convolutional 
deep neural networks on recognizing specific symmetric object categories (e.g. faces, cars, the digit 8) gives rise 
to AL-like mirror-symmetric tuning. It is due to a cascade of two effects: First, learning to discriminate among 
symmetric object categories promotes tuning for reflection-equivariant representations throughout the entire 
processing layers. This reflection equivariance increases with depth. Then, long-range spatial pooling (as in the 
transformation of the last convolution layer to the first fully connected layer in CNNs) transforms the equivariant 
representations into reflection-invariant representations. (C) Schematic representations of three viewpoints of a 
face (left profile, frontal view, right profile) are shown in three distinct stages of processing. Each tensor depicts the 
width (w), height (h), and depth (c) of an activation pattern. Colors indicate channel activity. From left to right: In a 
mid-level convolutional layer, representations are view-specific. A deeper convolutional layer produces reflection-
equivariant representations that are view-specific. Feature vectors of a fully connected layer become invariant 
to reflection by pooling reflection-equivariant representations from the last convolutional layer. (D) A graphical 
comparison of reflection-equivariance and reflection-invariance. Circles denote input images, and squares denote 
representations.

Figure 1 continued
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Figure 2. Mirror-symmetric viewpoint tuning of higher level deep neural network representations emerges for multiple object categories. (A) Different 
viewpoint tuning across the layers of AlexNet for four example objects. For each object, the responses to nine views (–90° to +90° in the steps of 
22.5°) were measured in six key AlexNet layers, shallow (input, left) to deep (fc6, right). For each layer, a Representational Dissimilarity Matrix (RDM) 
depicts how the population activity vector varies across different object views. Each element of the RDM represents the dissimilarity (1 - Pearson 
correlation coefficient) between a pair of activity vectors evoked in response to two particular views. The symmetry of the RDMs about the major 
diagonal is inherent to their construction. However, the symmetry about the minor diagonal (for the face and chair, in fc6, and for the car, already in 
conv2) indicates mirror-symmetric viewpoint tuning. (B) The schematic shows how the mirror-symmetric viewpoint tuning index was quantified. We first 
fed the network with images of each object from nine viewpoints and recorded the activity patterns of its layers. Then, we computed the dissimilarity 
between activity patterns of different viewpoints to create an RDM. Next, we measured the correlation between the obtained RDM and its horizontally 

Figure 2 continued on next page
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supplement 6). This result is suggestive of an alternative explanation: that training the network on 
ImageNet gives rise to a reflection-equivariant representation in pool5. We therefore investigated the 
reflection equivariance of the convolutional representations.

Reflection equivariance versus reflection invariance of convolutional 
layers
Consider a representation ‍f(·)‍, defined as a function that maps input images to sets of feature maps, 
and a geometric image transformation ‍g(·)‍, applicable to either feature maps or raw images. ‍f ‍ is equi-
variant under ‍g‍ if ‍f(g(x)) = g(f(x))‍ for any input image ‍x‍ (see also Kvinge et al., 2022). While convo-
lutional feature maps are approximately equivariant under translation (but see Azulay and Weiss, 
2019), they are not in general equivariant under reflection or rotation. For example, an asymmetrical 
filter along reflection axes in the first convolutional layer would yield an activation map that is not 
equivariant under reflection. And yet, the demands of the task on which a CNN is trained may lead to 
the emergence of representations that are approximately equivariant under reflection or rotation (see 
Cohen and Welling, 2016; Weiler et al., 2018 for neural network architectures that are equivariant 
to reflection or rotation by construction). If a representation ‍f ‍ is equivariant under a transformation 

‍g‍ that is a spatial permutation of its input (e.g. ‍g‍ is a horizontal or vertical reflection or a 90° rotation) 
then ‍f(x)‍ and ‍f(g(x))‍ are spatially permuted versions of each other. If a spatially invariant function ‍h(·)‍ 
(i.e. a function that treats the pixels as a set, such as the average or the maximum) is then applied to 
the feature maps, the composed function ‍h ◦ f ‍ is invariant to ‍g‍ since ‍h

(
f(g(x))

)
= h

(
g(f(x))

)
= h(f(x))‍. 

Transforming a stack of feature maps into a channel vector by means of global average pooling is a 
simple case of such a spatially invariant function ‍h‍. Therefore, if task-training induces approximately 
reflection-equivariant representations in the deepest convolutional layer of a CNN and approximately 
uniform pooling in the following fully connected layer, the resulting pooled representation would be 
approximately reflection-invariant.

We examined the emergence of approximate equivariance and invariance in CNN layers (Figure 3). 
We considered three geometric transformations: horizontal reflection, vertical reflection, and 90° 
rotation. Note that given their architecture alone, CNNs are not expected to show greater equivari-
ance and invariance for horizontal reflection compared to vertical reflection or 90° rotation. However, 
greater invariance and equivariance for horizontal reflection may be expected on the basis of natural 
image statistics and the demands of invariant recognition. Many object categories in the natural world 

flipped counterpart, excluding the frontal view (which is unaffected by the reflection). (C) The Mirror-symmetric viewpoint tuning index across all AlexNet 
layers for nine object categories (car, boat, face, chair, airplane, animal, tool, fruit, and flower). Each solid circle denotes the average of the index over 
25 exemplars within each object category. Error bars indicate the standard error of the mean. The mirror-symmetric viewpoint tuning index values of 
the four example objects in panel B are shown at the bottom right of each RDM in panel B. Figure 2—figure supplement 4 shows the same analysis 
applied to representations of the face stimulus set used in Freiwald and Tsao, 2010, across various neural network models. (D) 3D Objects have 
different numbers of symmetry axes. A face (left column), a non-face object with bilateral symmetry (a chair, second column), an object with quadrilateral 
symmetry (a car, third column), and an object with no obvious reflective symmetry planes (a flower, right column).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Assessment of symmetry planes in 3D renders across viewpoints.

Figure supplement 2. The mirror-symmetric viewpoint tuning index remains unchanged as the signal moves into the fully connected layers of the 
untrained network.

Figure supplement 3. Convolutional networks, regardless of their architecture and training objectives, exhibit peak mirror-symmetric viewpoint tuning 
at the fully-connected and average pooling layers.

Figure supplement 4. Mirror-symmetric viewpoint tuning of various neural network architectures measured with respect to the FIV face stimulus set 
(Freiwald and Tsao, 2010) and compared to the mirror-symmetric viewpoint tuning of three face-patches (MLMF, AL, and AM).

Figure supplement 5. The highest mirror-symmetric viewpoint tuning index across all layers of each evaluated neural network model.

Figure supplement 6. One of the key operations in fully-connected layers is spatial pooling.

Figure supplement 7. Layer-wise mirror-symmetric viewpoint tuning profiles measured by linear correlation without employing unit-specific z-score 
normalization.

Figure supplement 8. Comparison of mirror-symmetric viewpoint tuning in a supervised, PCA-based model (Leibo et al., 2017) and a supervised CNN 
(AlexNet) trained on object recognition.

Figure 2 continued

https://doi.org/10.7554/eLife.90256
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are bilaterally symmetric with respect to a plane parallel to the axis of gravity and are typically viewed 
(or photographed) in an upright orientation. Horizontal image reflection, thus, tends to yield equally 
natural images of similar semantic content, whereas vertical reflection and 90° rotation yield unnatural 
images.

To measure equivariance and invariance, we presented the CNNs with pairs of original and trans-
formed images. To measure the invariance of a fully-connected CNN layer, we calculated an across-
unit Pearson correlation coefficient for each pair of activation vectors that were induced by a given 
image and its transformed version. We averaged the resulting correlation coefficients across all image 
pairs (Materials and methods, Equation 2). For convolutional layers, this measure was applied after 
flattening stacks of convolutional maps into vectors. In the case of horizontal reflection, this invariance 
measure would equal 1.0 if the activation vectors induced by each image and its mirrored version are 
identical (or perfectly correlated).

Equivariance could be quantified only in convolutional layers because units in fully connected layers 
do not form visuotopic maps that can undergo the same transformations as images. It was quantified 
similarly to invariance, except that we applied the transformation of interest (i.e. reflection or rotation) 
not only to the image but also to the convolutional map of activity elicited by the untransformed 

Figure 3. Equivariance and invariance in trained and untrained deep convolutional neural networks. Each solid circle represents an equivariance or 
invariance measure, averaged across images. Hues denote different transformations (horizontal flipping, vertical flipping, or 90° rotation). Error bars 
depict the standard deviation across images (each test condition consists of 2025 images). Invariance is a measure of similarity between the activity 
pattern an image elicits and the activity pattern its transformed (e.g. flipped) counterpart (solid lines) elicits. Equivariance is a measure of the similarity 
between the activity pattern of a transformed image elicits and the transformed version of the activity pattern the untransformed image elicits (dashed 
lines). In the convolutional layers, both invariance and equivariance can be measured. In the fully connected layers, whose representations have no 
explicit spatial structure, only invariance is measurable. (A) ImageNet-trained AlexNet tested on the rendered 3D objects. (B) Untrained AlexNet 
tested on rendered 3D objects. (C) ImageNet-trained AlexNet tested on the natural images (images randomly selected from the test set of ImageNet). 
(D) Untrained AlexNet tested on the natural images. (E) ImageNet-trained AlexNet tested on the random noise images. (F) Untrained AlexNet tested on 
the random noise images.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Image-specific representational invariance and equivariance across 3D object renders, natural images, and random noise 
images, measured in a deep convolutional neural network (AlexNet) trained on ImageNet or alternatively, left untrained.

Figure supplement 2. Training-induced enhancement of horizontal reflection invariance in the first fully connected layer (fc6), across different object 
categories.

https://doi.org/10.7554/eLife.90256
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image (Equation 3). We correlated the representation of the transformed image with the transformed 
representation of the image. In the case of horizontal reflection, this equivariance measure would 
equal 1.0 if each activation map induced by an image and its reflected version are reflected versions 
of each other (or are perfectly correlated after horizontally flipping one of them).

We first evaluated equivariance and invariance with respect to the set of 3D object images described 
in the previous section. In an ImageNet-trained AlexNet, horizontal-reflection equivariance increased 
across convolutional layers (Figure 3A). Equivariance under vertical reflection was less pronounced 
and equivariance under 90° rotation was even weaker (Figure 3A). In this trained AlexNet, invariance 
jumped from a low level in convolutional layers to a high level in the fully connected layers and was 
highest for horizontal reflection, lower for vertical reflection, and lowest for 90° rotation.

In an untrained AlexNet, the reflection equivariance of the first convolutional layer was higher than 
in the trained network. However, this measure subsequently decreased in the deeper convolutional 
layers to a level lower than that observed for the corresponding layers in the trained network. The 
higher level of reflection-equivariance of the first layer of the untrained network can be explained by 
the lack of strongly oriented filters in the randomly initialized layer weights. While the training leads to 
oriented filters in the first layer, it also promotes downstream convolutional representations that have 
greater reflection-equivariance than those in a randomly-initialized, untrained network.

The gap between horizontal reflection and vertical reflection in terms of both equivariance and 
invariance was less pronounced in the untrained network (Figure 3B), indicating a contribution of 
task training to the special status of horizontal reflection. In contrast, the gap between vertical reflec-
tion and 90° rotation in terms of both equivariance and invariance was preserved in the untrained 
network. This indicates that the greater degree of invariance and equivariance for vertical reflection 
compared to 90° rotation is largely caused by the test images’ structure rather than task training. 
One interpretation is that, unlike 90° rotation, vertical and horizontal reflection both preserve the 
relative prevalence of vertical and horizontal edge energy, which may not be equal in natural images 
(Coppola et al., 1998; Torralba and Oliva, 2003; Henderson and Serences, 2021; Girshick et al., 
2011). To test if the emergence of equivariance and invariance under horizontal reflection is unique 
to our controlled stimulus set (which contained many horizontally symmetrical images), we repeated 
these analyses using natural images sampled from the ImageNet validation set (Figure 3C–D). The 
training-dependent layer-by-layer increase in equivariance and invariance to horizontal reflection was 
as pronounced for natural images as it was for the rendered 3D object images. Therefore, the emer-
gent invariance and equivariance under horizontal reflection are not an artifact of the synthetic object 
stimulus set.

Repeating these analyses on random noise images, the ImageNet-trained AlexNet still showed a 
slightly higher level of horizontal reflection-equivariance (Figure 3E), demonstrating the properties 
of the features learned in the task independently of symmetry structure in the test images. When we 
evaluated an untrained AlexNet on random noise images (Figure 3F), that is, when there was no struc-
ture in either the test stimuli or the network weights, the differences between horizontal reflection, 
vertical reflection, and rotation measures disappeared, and the invariance and equivariance measures 
were zero, as expected (see Figure 3—figure supplement 1 for the distribution of equivariance and 
invariance across test images and Figure 3—figure supplement 2 for analysis of horizontal reflection 
invariance across different object categories).

To summarize this set of analyses, a high level of reflection-invariance is associated with the layer’s 
pooling size and the reflection-equivariance of its feeding representation. The pooling size depends 
only on the architecture, but the reflection-equivariance of the feeding representation depends on 
both architecture and training. Training on recognizing objects in natural images induces a greater 
degree of invariance and equivariance to horizontal reflection compared to vertical reflection or 90° 
rotation. This is consistent with the statistics of natural images as experienced by an upright observer 
looking, along a horizontal axis, at upright bilaterally symmetric objects. Image reflection, in such 
a world ordered by gravity, does not change the category of an object (although rare examples of 
dependence of meaning on handedness exist, such as the letters p and q, and molecules whose 
properties depend on their chirality). However, the analyses reported thus far leave unclear whether 
natural image statistics alone or the need to disregard the handedness for categorization drive mirror-
symmetric viewpoint tuning. In the following section, we examine what it is about the training that 
drives viewpoint tuning to be mirror-symmetric.

https://doi.org/10.7554/eLife.90256
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Learning to discriminate among categories of bilaterally symmetric 
objects induces mirror-symmetric viewpoint tuning
To examine how task demand and visual diet influence mirror-symmetric viewpoint tuning, we trained 
four deep convolutional neural networks of the same architecture on different datasets and tasks 
(Figure 4). The network architecture and training hyper-parameters are described in the Materials and 
Methods section (for training-related metrics, see Figure 4—figure supplement 1). Once trained, 
each network was evaluated on the 3D object images used in Figure 2, measuring mirror-symmetric 
viewpoint tuning qualitatively (Figure 4B) and quantitatively (Figure 4C).

First, we considered a network trained on CIFAR-10 (Krizhevsky and Hinton, 2009), a dataset 
of small images of 10 bilaterally symmetric categories (airplanes, cars, birds, cats, deer, dogs, frogs, 
horses, ships, and trucks). Although this dataset contains no human face images (such images appear 
coincidentally in the ImageNet dataset, Yang et al., 2022), the CIFAR-10-trained network reproduced 
the result of a considerable level of mirror-symmetric viewpoint tuning for faces in layers fc1 and fc2 
(Figure 4B, top row). This network also showed mirror-symmetric viewpoint tuning for other bilaterally 
symmetric objects such as cars, airplanes, and boats (Figure 4C, blue lines).

We then considered a network trained on SVHN (Street View House Numbers; Netzer et  al., 
2011), a dataset of photographs of numerical digits. Its categories are mostly asymmetric (since all 
10 digits except for ‘0’ and ‘8’ are asymmetric). Unlike the network trained on CIFAR-10, the SVHN-
trained network showed a very low level of mirror-symmetric viewpoint tuning for faces. Furthermore, 
its levels of mirror-symmetric viewpoint tuning for cars, airplanes, and boats were reduced relative to 
the CIFAR-10-trained network.

SVHN differs from CIFAR-10 both in its artificial content and the asymmetry of its categories. To 
disentangle these two factors, we designed a modified dataset, ‘symSVHN’. Half of the images in 
symSVHN were horizontally reflected SVHN images. All the images maintained their original cate-
gory labels (e.g. images of the digit 7 and images of a mirrored 7 belonged to the same category). 
We found that the symSVHN-trained network reproduced the mirror-symmetric viewpoint tuning 
observed in the CIFAR-10-trained network.

Last, we modified the labels of symSVHN such that the flipped digits would count as 10 separate 
categories, in addition to the 10 unflipped digit categories. This dataset (‘asymSVHN’) has the same 
images as symSVHN, but it is designed to require reflection-sensitive recognition. The asymSVHN-
trained network reproduced the low levels of mirror-symmetric viewpoint tuning observed for the 
original SVHN dataset. Together, these results suggest that given the spatial pooling carried out by 
fc1, the task demand of reflection-invariant recognition is a sufficient condition for the emergence of 
mirror-symmetric viewpoint tuning for faces.

Equivariant local features drive mirror-symmetric viewpoint tuning
What are the image-level visual features that drive the observed mirror-symmetric viewpoint tuning? 
Do mirror-reflected views of an object induce similar representations because of global 2D configura-
tions shared between such views? Or alternatively, are reflection-equivariant local features sufficient 
to explain the finding of similar responses to reflected views in fc1? We used a masking-based impor-
tance mapping technique (Petsiuk et al., 2018) to characterize which features drive the responses 
of units with mirror-symmetric viewpoint tuning. First, we created importance maps whose elements 
represent how local features influence each unit’s response to different object views. The top rows of 
panels A and B in Figure 5 show examples of such maps for two units, one that shows considerable 
mirror-symmetric viewpoint tuning for cars and another that shows considerable mirror-symmetric 
viewpoint tuning for faces.

Next, we empirically tested whether the local features highlighted by the importance maps are 
sufficient and necessary for generating mirror-symmetric viewpoint tuning. We used two image 
manipulations: insertion and deletion (Petsiuk et al., 2018; Figure 5A–B, middle rows). When we 
retained only the most salient pixels (i.e. insertion), we observed that the units’ mirror-symmetric 
viewpoint tuning levels were similar to those induced by unmodified images (Figure 5A–B, dark blue 
lines). This result demonstrates that the local features suffice for driving mirror-symmetrically tuned 
responses. Conversely, greying out the most salient pixels (deletion) led to a complete loss of mirror-
symmetric viewpoint tuning (Figure 5A–B, red lines). This result demonstrates that the local features 
are necessary to drive mirror-symmetrically tuned responses. To examine this effect systematically, 
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Figure 4. The effect of training task and training dataset on mirror-symmetric viewpoint tuning. (A) Four datasets are used to train deep neural networks 
of the same architecture: CIFAR-10, a natural image dataset with ten bilaterally symmetric object categories; SVHN, a dataset with mostly asymmetric 
categories (the ten numerical digits); symSVHN, a version of the SVHN dataset in which the categories were made bilaterally symmetric by horizontally 
reflecting half of the training images (so the digit 7 and its mirrored version count as members of the same category); asymSVHN, the same image set as 
in symSVHN but with the mirrored images assigned to ten new distinct categories (so the digit 7 and its mirrored version count as members of distinct 
categories). (B) Each row represents the RDMs of the face exemplar images from nine viewpoints for each trained network corresponding to its left side 
panel. Each entry of the RDM represents the dissimilarity (1 - Pearson’s r) between two pairs of image-induced activity vectors in the corresponding 
layer. The RDMs’ order from left to right refers to the depth of layers within the network. As the dissimilarity color bar indicates, the dissimilarity values 
increase from black to white color. (C) Mirror-symmetric viewpoint tuning index values across layers for nine object categories in each of the four 
networks. The solid circles refer to the average of the index across 25 exemplars within each object category for three networks trained on 10 labels. The 
red dashed line with open circles belongs to the asymSVHN network trained on 20 labels. The gray dashed lines indicate the index of zero. Error bars 
represent the standard error of the mean calculated across exemplars.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Network learning curves.

https://doi.org/10.7554/eLife.90256
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Figure 5. Reflection-invariant viewpoint-specific responses are driven mostly by local features. This figure traces image-level causes for the mirror-
symmetric viewpoint tuning using Randomized Input Sampling for Explanation (RISE, Petsiuk et al., 2018). (A) Analysis of the features of different 
views of a car exemplar that drive one particular unit in fully connected layer fc6 of AlexNet. The topmost row in each panel depicts an image-specific 
importance map overlaid to each view of the car, charting the contribution of each pixel to the unit’s response. The second row (‘deletion’) depicts a 
version of each input image in which the 25% most contributing pixels are masked with the background gray color. The third row (‘insertion‘) depicts 
a version of the input images in which only the most contributing 25% of pixels appear. The last row represents the shuffled spatial configuration of 
extracted local features, which maintains their structure and changes their locations. The charts on the right depict the units’ responses to the original, 
deletion, insertion, and shuffled images. The dashed line indicates the units’ response to a blank image. The y-axis denotes the unit’s responses 

Figure 5 continued on next page
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we selected one unit for each of the 225 3D objects that showed high mirror-symmetric viewpoint 
tuning. We then tested these 225 units with insertion and deletion images produced with different 
thresholds (Figure 5C). Across all threshold levels, the response to insertion images was more similar 
to the response to unmodified images, whereas deletion images failed to induce mirror-symmetric 
viewpoint tuning.

These results indicate a role for local features in mirror-symmetric tuning. However, the features 
may form larger-scale configurations synergistically. To test the potential role of such configurations, 
we shuffled contiguous pixel patches that were retained in the insertion condition. This manipula-
tion destroyed global structure while preserving local features (Figure 5A–B, bottom row). We found 
that the shuffled images largely preserved the units’ mirror-symmetric viewpoint tuning (Figure 5D). 
Thus, it is the mere presence of a similar set of reflected local features (rather than a reflected global 
configuration) that explains most of the acquired mirror-symmetric viewpoint tuning. Note that such 
local features must be either symmetric at the image level (e.g. the wheel of a car in a side view), or 
induce a reflection-equivariant representation (e.g. an activation map that highlights profile views of 
a nose, regardless of their orientation). The fc6 layer learns highly symmetrical weight maps, reducing 
the sensitivity to local feature configurations and enabling the generation of downstream reflection-
invariant representations compared to convolutional layers (Figure 5—figure supplement 1).

Representational alignment between artificial networks and macaque 
face patches
How does the emergence of mirror-invariance in CNNs manifest in the alignment of these networks 
with neural representations of faces in the macaque face-patch system? In line with (Yildirim et al., 
2020), we reanalyzed the neural recordings from Freiwald and Tsao, 2010 by correlating neural 
population RDMs, each describing the dissimilarities among neural responses to face images of 
varying identities and viewpoints, with corresponding model RDMs, derived from neural network 
layer representations of the stimulus set (Figure 6, top row). In addition to the AL face-patch, we 
considered MLMF, which is sensitive to reflection (Freiwald and Tsao, 2010), and AM, which is mostly 
viewpoint invariant (Freiwald and Tsao, 2010). Following the approach of Yildirim and colleagues, 
the neural networks were presented with segmented reconstructions, where non-facial pixels were 
replaced by a uniform background.

Consistent with previous findings (Yildirim et al., 2020), MLMF was more aligned with the CNNs’ 
mid-level representation, notably the last convolutional layers (Figure 6A). The AL face patch showed 
its highest representational alignment with the first fully connected layer (Figure 6B), coinciding with 

compared to its response to a blank image. (B) Analogous analysis of the features of different views of a face that drive a different unit in fully connected 
layer fc6 of AlexNet. (C) Testing local contributions to mirror-symmetric viewpoint tuning across all object exemplars and insertion/deletion thresholds. 
For each object exemplar, we selected a unit with a highly view-dependent but symmetric viewpoint tuning (the unit whose tuning function was 
maximally correlated with its reflection). We then measured the correlation between this tuning function and the tuning function induced by insertion or 
deletion images that were generated by a range of thresholding levels (from 10 to 90%). Note that each threshold level consists of images with the same 
number of non-masked pixels appearing in the insertion and deletion conditions. In the insertion condition, only the most salient pixels are retained, 
and in the deletion condition, only the least salient pixels are retained. The solid circles and error bars indicate the median and standard deviation 
over 225 objects, respectively. The right y-axis depicts the difference between insertion and deletion conditions. Error bars represent the SEM. (D) For 
each of 225 objects, we selected units with mirror-symmetric viewpoint tuning above the 95 percentile (≈200 units) and averaged their corresponding 
importance maps. Next, we extracted the top 25% most contributing pixels from the averaged maps (insertion) and shuffled their spatial configuration 
(shuffled). We then measured the viewpoint-RDMs for either the inserted or shuffled object image set. The scatterplot compares the mirror-symmetric 
viewpoint tuning index between insertion and shuffled conditions, calculated across the selected units. Each solid circle represents an exemplar object. 
The high explained variance indicates that the global configuration does not play a significant role in the emergence of mirror-symmetric viewpoint 
tuning.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The emergence of mirror symmetric weight tensors in AlexNet.

Figure supplement 2. Individual neural network units exhibiting mirror-symmetric view tuning according to the criterion employed by Baek et al., 
2021a.

Figure supplement 3. Selecting individual units with genuine mirror-symmetric viewpoint tuning.

Figure supplement 4. Training-dependent emergence of units with mirror-symmetric viewpoint tuning across neural network layers.

Figure 5 continued
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the surge of the mirror-symmetric viewpoint tuning index at this processing level (see Figure 2). The 
AM face patch aligned most with the fully connected layers (Figure 6C).

These correlations between model and neural RDMs reflect the contribution of multiple underlying 
image features. To disentangle the contribution of reflection-invariant and reflection-sensitive repre-
sentations to the resulting RDM correlation, we computed two additional model representations for 
each neural network layer: (1) a reflection-invariant representation, obtained by element-wise addition 
of two activation tensors, one elicited in response to the original stimuli and the other in response 
to mirror-reflected versions of the stimuli; and, (2) a reflection-sensitive representation, obtained by 
element-wise subtraction of these two tensors. The two resulting feature components sum to the 
original activation tensor; a fully reflection-invariant representation would be entirely accounted for 
by the first component. For each CNN layer, we obtained the two components and correlated each 
of them with the unaltered neural RDMs. Through the Shapley value feature attribution method 
(Shapley, 1953), we transformed the resulting correlation coefficients into additive contributions of 
the reflection-invariant and reflection-sensitive components to the original model-brain RDM correla-
tions (Figure 6D–F).

In the MLMF face patch, reflection-sensitive features contributed more than reflection-invariant 
ones, consistent with the dominance of reflection-sensitive information in aligning network layers 
with MLMF data (Figure 6D). Conversely, in the AL and AM face patches, reflection-invariant features 
accounted for nearly all the observed model–brain RDM correlations (Figure 6E, F). For most of the 

Figure 6. Reflection-invariant and reflection-sensitive contributions to the representational similarity between monkey face patch neurons and AlexNet 
layers. The neural responses were obtained from Freiwald and Tsao, 2010, where electrophysiological recordings were conducted in three faces 
patches while the monkeys were presented with human faces of various identities and views. (Top row) linear correlations between RDMs from each 
network layer and each monkey face patch (MLMF, AL, AM). Error bars represent standard deviations estimated by bootstrapping individual stimuli 
(see Materials and methods). The gray area represents the neural data’s noise ceiling, whose lower bound was determined by Spearman-Brown-
corrected split-half reliability, with the splits applied across neurons. (Bottom row) Each model–brain RDM correlation is decomposed into the additive 
contribution of two feature components: reflection-sensitive (purple) and reflection-invariant (yellow). Figure 6—figure supplements 1–3 present the 
same analyses applied to a diverse set of neural network models, across the three regions.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Alignment of MLMF and neural network representations across diverse architecures.

Figure supplement 2. Alignment of AL and neural network representations across diverse architecures.

Figure supplement 3. Alignment of AM and neural network representations across diverse architecures.

https://doi.org/10.7554/eLife.90256


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Farzmahdi et al. eLife 2024;13:e90256. DOI: https://doi.org/10.7554/eLife.90256 � 15 of 24

convolutional layers, the contribution of the reflection-sensitive component to AL or AM alignment 
was negative—meaning that if the layers’ representations were more reflection-invariant, they could 
have explained the neural data better.

Discussion
In this paper, we propose a simple learning-driven explanation for the mirror-symmetric viewpoint 
tuning for faces in the macaque AL face-patch. We found that CNNs trained on object recognition 
reproduce this tuning in their fully connected layers. Based on in silico experiments, we suggest two 
jointly sufficient conditions for the emergence of mirror-symmetric viewpoint tuning. First, training the 
network to discriminate among bilaterally symmetric 3D objects yields reflection-equivariant represen-
tations in the deeper convolutional layers. Then, subsequent pooling of these reflection-equivariant 
responses by units with large receptive fields leads to reflection-invariant representations with mirror-
symmetric view tuning similar to that observed in the AL face patch. Like our models, monkeys need 
to recognize bilaterally symmetric objects that are oriented by gravity. To achieve robustness to view, 
the primate visual system can pool responses from earlier stages of representation. We further show 
that in CNNs, such tuning is not limited to faces and occurs for multiple object categories with bilat-
eral symmetry. This result yields a testable prediction for primate electrophysiology and fMRI.

Mirror-symmetric viewpoint tuning in brains and machines
Several species, including humans, confuse lateral mirror images (e.g. the letters b and d) more often 
than vertical mirror images (e.g. the letters b and p; Sutherland, 1960; Todrin and Blough, 1983). 
Children often experience this confusion when learning to read and write (Nelson and Peoples, 1975; 
Bornstein et  al., 1978; Cornell, 1985; Dehaene et  al., 2010). Single-cell recordings in macaque 
monkeys presented with simple stimuli indicate a certain degree of reflection-invariance in IT neurons 
(Rollenhagen and Olson, 2000; Baylis and Driver, 2001). Human neuroimaging experiments also 
revealed reflection-invariance across higher-level visual regions for human heads (Axelrod and Yovel, 
2012; Kietzmann et al., 2012; Ramírez et al., 2014; Kietzmann et al., 2017) and other bilaterally 
symmetric objects (Dilks et al., 2011; Ramírez et al., 2014).

When a neuron’s response is reflection-invariant and yet the neuron responds differently to different 
object views, it is exhibiting mirror-symmetric viewpoint tuning. Such tuning has been reported in a 
small subset of monkeys’ STS and IT cells in early recordings (Perrett et al., 1991; Logothetis et al., 
1995). fMRI-guided single-cell recordings revealed the prevalence of this tuning profile among the 
cells of face patch AL (Freiwald and Tsao, 2010). The question of why mirror-symmetric viewpoint 
tuning emerges in the cortex has drawn both mechanistic and functional explanations. Mechanistic 
explanations suggest that mirror-symmetric viewpoint tuning is a by-product of increasing interhemi-
spheric connectivity and receptive field sizes. Due to the anatomical symmetry of the nervous system 
and its cross-hemispheric interconnectivity, mirror-image pairs activate linked neurons in both hemi-
spheres (Corballis and Beale, 1976; Gross et al., 1977). A functional perspective explains partial 
invariance as a stepping stone toward achieving fully view-invariant object recognition (Freiwald and 
Tsao, 2010). Our results support a role for both of these explanations. We showed that global spatial 
pooling is a sufficient condition for the emergence of reflection-invariant responses, if the pooled 
representation is reflection-equivariant. Global average pooling extends the spatially integrated stim-
ulus region. Likewise, interhemispheric connectivity may result in cells with larger receptive fields that 
cover both hemifields.

A recent work by Revsine et al., 2024 incorporated biological constraints, including interhemi-
spheric connectivity, into a model processing solely low-level stimulus features, namely intensity 
and contrast. Their results suggest that such features might be sufficient for explaining apparent 
mirror-symmetric viewpoint tuning in fMRI studies. In our study, we standardized stimulus intensity 
and contrast across objects and viewpoints (see Methods), eliminating these features as potential 
confounds. Additionally, applying a dissimilarity measure that is invariant to the overall magnitude 
of the representations did not alter the observed trends in mirror-symmetric viewpoint tuning results 
(Figure 2—figure supplement 7). Therefore, we suggest that spatial pooling can yield genuine mirror-
symmetric viewpoint tuning in CNNs and brains by summating equivariant mid-level visual features 
(see Figure 5) that are learning-dependent (Figure 4).

https://doi.org/10.7554/eLife.90256
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We also showed that equivariance can be driven by the task demand of discriminating among 
objects that have bilateral symmetry (see Olah et al., 2020 for an exploration of emergent equiv-
ariance using activation maximization). The combined effect of equivariance and pooling leads to 
a leap in reflection-invariance between the last convolutional layer and the fully connected layers in 
CNNs. This transition may be similar to the transition from view-selective cells in face patches ML/
MF to mirror-symmetric viewpoint-selective cells in AL. In both CNNs and primate cortex, the mirror-
symmetrically viewpoint-tuned neurons are a penultimate stage on the path to full view invariance 
(Freiwald and Tsao, 2010).

Unifying the computational explanations of mirror-symmetric viewpoint 
tuning
Two computational models have been suggested to explain AL’s mirror-symmetric viewpoint tuning, 
the first attributing it to Hebbian learning with Oja’s rule (Leibo et al., 2017), the second to training 
a CNN to invert a face-generative model (Yildirim et al., 2020). A certain extent of mirror-symmetric 
viewpoint tuning was also observed in CNNs trained on face identification (Fig. 3Eii in Yildirim et al., 
2020, Figure 2 in Raman and Hosoya, 2020). In light of our findings here, these models can be 
viewed as special cases of a considerably more general class of models. Our results generalize the 
computational account in terms of both stimulus domain and model architecture. Both (Leibo et al., 
2017) and (Yildirim et al., 2020) trained neural networks with face images. Here, we show that it is 
not necessary to train on a specific object category (including faces) in order to acquire reflection 
equivariance and invariance for exemplars of that category. Instead, learning mirror-invariant stimulus-
to-response mappings gives rise to equivariant and invariant representations also for novel stimulus 
classes.

Our claim that mirror-symmetric viewpoint tuning is learning-dependent may seem to be in conflict 
with findings by Baek and colleagues (Baek et al., 2021a). Their work demonstrated that units with 
mirror-symmetric viewpoint tuning profile can emerge in randomly initialized networks. Reproducing 
Baek and colleagues’ analysis, we confirmed that such units occur in untrained networks (Figure 5—
figure supplement 3). However, we also identified that the original criterion for mirror-symmetric 
viewpoint tuning employed in Baek et al., 2021a was satisfied by many units with asymmetric tuning 
profiles (Figure 5—figure supplements 2 and 3). Once we applied a stricter criterion, we observed 
a more than twofold increase in mirror-symmetric units in the first fully connected layer of a trained 
network compared to untrained networks of the same architecture (Figure 5—figure supplement 
4). This finding highlights the critical role of training in the emergence of mirror-symmetric viewpoint 
tuning in neural networks also at the level of individual units.

Our results also generalize the computational account of mirror-symmetric viewpoint tuning in 
terms of the model architectures. The two previous models incorporated the architectural property 
of spatial pooling: the inner product of inputs and synaptic weights in the penultimate layer of the 
HMAX-like model in Leibo et al., 2017 and the global spatial pooling in the f4 layer of the EIG model 
(Yildirim et al., 2020). We showed that in addition to the task, such spatial pooling is an essential step 
toward the emergence of mirror-symmetric tuning in our findings.

Limitations
The main limitation of the current study is that our findings are simulation-based and empirical in 
nature. Therefore, they might be limited to the particular design choices shared across the range of 
CNNs we evaluated. This limitation stands in contrast with the theoretical model proposed by Leibo 
and colleagues (Leibo et al., 2017), which is reflection-invariant by construction. However, it is worth 
noting that the model proposed by Leibo and colleagues is reflection-invariant only with respect to 
the horizontal center of the input image (Figure 2—figure supplement 8). CNNs trained to discrim-
inate among bilaterally symmetric categories develop mirror-symmetric viewpoint tuning across the 
visual field (Figure 2—figure supplement 8). The latter result pattern is more consistent with the 
relatively position-invariant response properties of AL neurons (Fig. S10 in Freiwald and Tsao, 2010).

A second consequence of the simulation-based nature of this study is that our findings only estab-
lish that mirror-symmetric viewpoint tuning is a viable computational means for achieving view invari-
ance; they do not prove it to be a necessary condition. In fact, previous modeling studies Farzmahdi 
et al., 2016; Leibo et al., 2015; Leibo et al., 2017 have demonstrated that a direct transition from 
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view-specific processing to view invariance is possible. However, in practice, we observe that both 
CNNs and the face-patch network adopt solutions that include intermediate representations with 
mirror-symmetric viewpoint tuning.

A novel prediction: mirror-symmetric viewpoint tuning for non-face 
objects
Mirror-symmetric viewpoint tuning has been mostly investigated using face images. Extrapolating 
from the results in CNNs, we hypothesize that mirror-symmetric viewpoint tuning for non-face objects 
should exist in cortical regions homologous to AL. The mirror-symmetric tuning of these objects does 
not necessarily have to be previously experienced by the animal.

This hypothesis is consistent with the recent findings of Bao et al., 2020. They report a functional 
clustering of IT into four separate networks. Each of these networks is elongated across the IT cortex 
and consists of three stages of processing. We hypothesize that the intermediate nodes of the three 
non-face selective networks have reflection-invariant yet view-selective tuning, analogous to AL’s 
representation of faces.

Our controlled stimulus set, which includes systematic 2D snapshots of 3D real-world naturalistic 
objects, is available online. Future electrophysiological and fMRI experiments utilizing this stimulus 
set can verify whether the mirror-symmetric viewpoint tuning for non-face categories we observe in 
task-trained CNNs also occurs in the primate IT.

Methods
3D object stimulus set
We generated a diverse image set of 3D objects rendered from multiple views in the depth rota-
tion. Human faces were generated using the Basel Face Model (Gerig et al., 2018). For the non-
face objects, we purchased access to 3D models on TurboSquid (http://www.turbosquid.com). The 
combined object set consisted of nine categories (cars, boats, faces, chairs, airplanes, animals, tools, 
fruits, and flowers). Each category included 25 exemplars. We rendered each exemplar from nine 
views, giving rise a total of 2025 images. The views span from –90° (left profile) to +90°, with steps of 
22.5°. The rendered images were converted to grayscale, placed on a uniform gray background, and 
scaled to 227 × 227 pixels to match the input image size of AlexNet, or to 224 × 224 to match the input 
image size of the VGG-like network architectures. Mean luminance and contrast of non-background 
pixels were equalized across images using the SHINE toolbox (Willenbockel et al., 2010).

Pre-trained neural networks
We selected both shallow and deep networks with varied architectures and objective functions. 
We evaluated convolutional networks trained on ImageNet, including AlexNet (Krizhevsky et  al., 
2012), VGG16 (Simonyan and Zisserman, 2015), ResNet50, ConvNeXt. Additionally, we evaluated 
VGGFace–a similar architecture to VGG16, trained on the VGG Face dataset (Parkhi et al., 2015), ViT 
with its non-convolutional architecture, EIG as a face generative model, and the shallow, biologically 
inspired HMAX model. All these networks, except for VGGFace, EIG, and HMAX, were trained on 
the ImageNet dataset (Russakovsky et al., 2015), which consists of ∼1.2 million natural images from 
1000 object categories (available on Matlab Deep Learning Toolbox and Pytorch frameworks, The 
MathWorks Inc, 2019; Paszke et al., 2019). The VGGFace model was trained on ∼2.6 million face 
images from 2622 identities (available on the MatConvNet library, Vedaldi and Lenc, 2015). Each 
convolutional network features a distinct number of convolutional (conv), max-pooling (pool), recti-
fied linear unit (relu), normalization (norm), average pooling (avgpool), and fully connected (fc) layers, 
among others, dictated by its architecture. For untrained AlexNet and VGG16 networks, we initialized 
the weights and biases using a random Gaussian distribution with a zero mean and a variance inversely 
proportional to the number of inputs per unit (LeCun et al., 2012).

Trained-from-scratch neural networks
To control for the effects of the training task and ‘visual diet’, we trained four networks employing 
the same convolutional architecture on four different datasets: CIFAR-10, SVHN, symSVHN, and 
asymSVHN.

https://doi.org/10.7554/eLife.90256
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CIFAR-10
CIFAR-10 consists of 60,000 RGB images of 10 classes (airplane, automobile, bird, cat, deer, dog, 
frog, horse, ship, truck) downscaled to 32 × 32 pixels (Krizhevsky and Hinton, 2009). We randomly 
split CIFAR-10’s designated training set into 45,000 images used for training and 5,000 images used 
for validation. No data augmentation was employed. The reported classification accuracy (Figure 4—
figure supplement 1) was evaluated on the remaining 10,000 CIFAR-10 test images.

SVHN
SVHN (Netzer et al., 2011) contains 99,289 RGB images of 10 digits (0–9) taken from real-world 
house number photographs (Netzer et al., 2011), cropped to character bounding boxes and down-
sized to 32 × 32 pixels. We split the dataset into 73,257 images for the training set and 26,032 images 
for the test set. As with the CIFAR-10 dataset, we randomly selected 10% of training images as the 
validation set.

symSVHN and asymSVHN
As a control experiment, we horizontally flipped half of the SVHN training images while keeping 
their labels unchanged. This manipulation encouraged the model trained on these images to become 
reflection-invariant in its decisions. This dataset was labeled as ‘symSVHN’. In a converse manipula-
tion, we applied the same horizontal flipping but set the flipped images’ labels to 10 new classes. 
Therefore, each image in this dataset pertained to one of 20 classes. This manipulation removed the 
shared response mapping of mirror-reflected images and encouraged the model trained on these 
images to become sensitive to the reflection operation. This dataset was labeled as ‘asymSVHN’.

Common architecture and training procedure
The networks’ architecture resembled the VGG architecture. It contained two convolutional layers 
followed by a max-pooling layer, two additional convolutional layers, and three fully connected layers. 
The size of convolutional filters was set to 3 × 3 with a stride of 1. The four convolutional layers 
consisted of 32, 32, 64, and 128 filters, respectively. The size of the max-pooling window was set to 2 
× 2 with a stride of 2. The fully-connected layers had 128, 256, and 10 channels and were followed by 
a softmax operation (the asymSVHN network had 20 channels in its last fully connected layer instead 
of 10). We added a batch normalization layer after the first and the third convolutional layers and a 
dropout layer (probability = 0.5) after each fully-connected layer to promote quick convergence and 
avoid overfitting.

The networks’ weights and biases were initialized randomly using the uniform He initialization 
(He et al., 2015). We trained the models using 250 epochs and a batch size of 256 images. The 
CIFAR-10 network was trained using stochastic gradient descent (SGD) optimizer starting with a 
learning rate of 10-3 and momentum of 0.9. The learning rate was halved every 20 epochs. The 
SVHN/symSVHN/asymSVHN networks were trained using the Adam optimizer. The initial learning 
rate was set to 10-5 and reduced by half every 50 epochs. The hyper-parameters were deter-
mined using the validation data. The models reached around 83% test accuracy (CIFAR-10: 81%, 
SVHN: 89%, symSVHN: 83%, asymSVHN: 80%). Figure 4—figure supplement 1 shows the models’ 
learning curves.

Measuring representational dissimilarities
For the analyses described in Figures 2–4, Deep layers in CNNs exhibit mirror-symmetric viewpoint 
tuning to multiple object categories, and Reflection equivariance versus reflection invariance of 
convolutional layers, we first normalized the activation level of each individual neural network unit by 
subtracting its mean response level across all images of the evaluated dataset and dividing it by its 
standard deviation. The dissimilarity between the representations of two stimuli in a particular neural 
network layer (Figures 2 and 4) was quantified as one minus the Pearson linear correlation coefficient 
calculated across all of the layer’s units (i.e. across the flattened normalized activation vectors). The 
similarity between representations (Figure 3) was quantified by the linear correlation coefficient itself.

https://doi.org/10.7554/eLife.90256
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Measuring mirror-symmetric viewpoint tuning
Using the representational dissimilarity measure described above, we generated an ‍n × n‍ dissimilarity 
matrix for each exemplar object ‍i‍ and layer ‍ℓ‍, where ‍n‍ is the number of views (9 in our dataset). Each 
element of the matrix, ‍D

i
j,k‍, denotes the representational distance between views ‍j‍ and ‍k‍ of object 

exemplar i. The views are ordered such that ‍j‍ and ‍n + 1 − k‍ refer to horizontally reflected views. We 
measured the mirror-symmetric viewpoint tuning index of the resulting RDMs by

	﻿‍
rmsvt = 1

N

N∑
i=1

r
(
Di, DiH),

‍�
(1)

where ‍r(·, ·)‍ is the Pearson linear correlation coefficient across view pairs, ‍DH ‍ refers to horizontally 
flipped matrix such that ‍D

H
j,k = Dj,n+1−k‍, and ‍N ‍ refers to number of object exemplars. The frontal 

view (which is unaltered by reflection) was excluded from this measure to avoid spurious inflation of 
the correlation coefficient. Previous work quantified mirror-symmetric viewpoint tuning by comparing 
neural RDMs to idealized mirror-symmetric RDM (see Fig. 3Ciii in Yildirim et al., 2020). Although 
highly interpretable, such an idealized RDM inevitably encompasses implicit assumptions about repre-
sentational geometry that are unrelated to mirror-symmetry. For example, consider a representation 
featuring perfect mirror-symmetric viewpoint tuning and wherein for each view, the representational 
distances among all of the exemplars are equal. Its neural RDM would fit an idealized mirror-symmetric 
RDM better than the neural RDM of a representation featuring perfect mirror-symmetric viewpoint 
tuning yet non-equidistant exemplars. In contrast, the measure proposed in Equation 1 equals 1.0 in 
both cases.

Measuring equivariance and invariance
Representational equivariance and invariance were measured for an ImageNet-trained AlexNet and 
an untrained AlexNet with respect to three datasets: the 3D object image dataset described above, a 
random sample of 2025 ImageNet test images, and a sample of 2025 random noise images (Figure 3). 
Separately for each layer ‍ℓ‍ and image set ‍x1, . . . , x2025‍, we measured invariance by

	﻿‍
rinvariance = 1

N

N∑
i=1

r
(
fℓ(xi), fℓ(g(xi))

)
,
‍�

(2)

where ‍fℓ(·)‍ is the mapping from an input image ‍x‍ to unit activations in layer ‍ℓ‍, ‍g(·)‍ is the image trans-
formation of interest–vertical reflection, horizontal reflection, or rotation and ‍r‍ is the Pearson linear 
correlation coefficient calculated across units, flattening the units’ normalized activations into a vector 
in the case of convolutional layers. In order to estimate equivariance, we used the following definition:

	﻿‍
requivariance = 1

N

N∑
i=1

r
(
fℓ(g(xi)), g(fℓ(xi))

)
‍�

(3)

Note that in this case, ‍g(·)‍ was applied both to the input images and the feature maps. This measure 
can be viewed as the inverse of an additive realization of latent space G-empirical equivariance devi-
ation (G-EED; Kvinge et al., 2022). To prevent spurious correlations that may result from flipping and 
rotating operations, we have removed the central column when flipping horizontally, the central row 
when flipping vertically, and the central pixel when rotating 90 degrees. As a result, any correlations 
we observe are unbiased.

Importance mapping
We used an established masking-based importance mapping procedure (Petsiuk et  al., 2018) to 
identify visual features that drive units that exhibit mirror-symmetric viewpoint tuning profiles. Given 
an object for which the target unit showed mirror-symmetric viewpoint tuning, we dimmed the inten-
sities of the images’ pixels in random combinations to estimate the importance of image features. 
Specifically, for each image, we generated 5000 random binary masks. Multiplying the image with 
these masks yielded 5000 images in which different subsets of pixels were grayed out. These images 
were then fed to the network as inputs. The resulting importance maps are averages of these masks, 
weighted by target unit activity. To evaluate the explanatory power of the importance map of each 

https://doi.org/10.7554/eLife.90256
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stimulus, we sorted the pixels according to their absolute values in the importance map and identified 
the top quartile of salient pixels. We then either retained (‘insertion’) or grayed out (‘deletion’) these 
pixels, and the resulting stimulus was fed into the network (Figure 5A–B). Due to the uniform gray 
background, we only considered foreground pixels. A second analysis compared viewpoint tuning 
between original images, deletion images, and insertion images across 10 thresholds, from 10% to 
90%, with steps of 10% (Figure 5C). We conducted an additional analysis to examine the influence of 
global structure on the mirror-symmetric viewpoint tuning of the first fully connected layer (Figure 5D). 
To conduct this analysis at the unit population level, we generated one insertion image-set per object. 
First, we correlated each unit’s view tuning curve against a V-shaped tuning template (i.e. a response 
proportional to the absolute angle of deviation from a frontal view) and retained only the units with 
positive correlations. We then correlated each unit’s view-tuning curve with its reflected counter-
part. We selected the top 5% most mirror-symmetric units (i.e. those showing the highest correlation 
coefficients).

For each object view, we generated an importance map for each of the selected units and aver-
aged these maps across units. Using this average importance map, we generated an insertion image 
by retaining the top 25% most salient pixels. To test the role of global configuration, we generated 
a shuffled version of each insertion image by randomly relocating connected components. To assess 
model response to these images for each object exemplar, we computed the corresponding (9 × 9 
views) RDM of fc1 responses given either the insertion images or their shuffled versions and quantified 
the mirror-symmetric viewpoint tuning of each RDM.

Measuring brain alignment
To measure the alignment between artificial networks and macaque face patches, we used the face-
identities-view (FIV) stimulus set (Freiwald and Tsao, 2010), as well as single-unit responses to these 
stimuli previously recorded from macaque face patches (Freiwald and Tsao, 2010). The FIV stimulus 
set includes images of 25 identities, each depicted in five views: left-profile, left-half profile, straight 
(frontal), right-half profile, and right-profile. The original recordings also included views of the head 
from upward, downward, and rear angles; these views were not analyzed in the current study to main-
tain comparability with its other analyses, which focused on yaw rotations. We measured the dissim-
ilarity between the representations of each image pair using 1 minus the Pearson correlation and 
constructed an RDM. To assess the variability of this measurement, we adopted a stimulus-level boot-
strap analysis, as outlined in Yildirim et al., 2020. A bootstrap sample was generated by selecting 
images with replacement from the FIV image set. From this sample, we calculated both the neural 
and model RDMs. To prevent spurious positive correlations, any nondiagonal identity pairs resulting 
from the resampling were removed. Subsequently, we determined the Pearson correlation coefficient 
between each pair of RDMs. This entire process was repeated across 1000 bootstrap samples. The 
authors declare no competing interest. The stimulus set and the source code required for reproducing 
our results are available at the following link: https://github.com/amirfarzmahdi/AL-Symmetry, (copy 
archived at Farzmahdi, 2024).
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