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Abstract

What do we perceive in a glance of an object? If we are questioned about it,
will our perception be affected? How does the task demand influence visual
processing in the brain and, consequently, our behaviour? To address these
questions, we conducted an object categorisation experiment with three tasks,
one at the superordinate level (‘animate/inanimate’) and two at the basic
levels (‘face/body’ and ‘animal/human face’) along with a passive task in
which participants were not required to categorise objects. To control bottom-
up information and eliminate the effect of sensory-driven dissimilarity, we
used a particular set of animal face images as the identical target stimuli across
all tasks. We then investigated the impact of top-down task demands on
behaviour and brain representations. Behavioural results demonstrated a
superordinate advantage in the reaction time, while the accuracy was similar
for all categorisation levels. The event-related potentials (ERPs) for all
categorisation levels were highly similar except for about 170 ms and after
300 ms from stimulus onset. In these time windows, the animal/human face
categorisation, which required fine-scale discrimination, elicited a differential
ERP response. Similarly, decoding analysis over all electrodes showed the
highest peak value of task decoding around 170 ms, followed by a few signifi-
cant timepoints, generally after 300 ms. Moreover, brain responses revealed
task-related neural modulation during categorisation tasks compared with the
passive task. Overall, these findings demonstrate different task-related effects
on the behavioural response and brain representations. The early and late
components of neural modulation could be linked to perceptual and top-down
processing of object categories, respectively.

KEYWORDS
behavioural responses, event-related potentials (ERPs), levels of object categorisation, N170,
task-related information
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1 | INTRODUCTION

In visual object categorisation, meaningful levels of
abstraction are constructed to organise visual stimuli.
For example, an object can be categorised at the super-
ordinate level (animal), basic level (dog) or subordinate
level (hound). Bottom-up (scene-dependent) (Hong
et al.,, 2016; Isik et al.,, 2013; VanRullen, 2007) and
top-down (task-dependent) (Bar et al.,, 2006; Cukur
et al., 2013; Harel et al., 2011; Harel et al., 2014; Vaziri-
Pashkam & Xu, 2017) processes control how an object
is represented in the brain and perceived by individuals.
Thus, our daily life’s visual object categorisation levels
might depend on the external stimulus and our
behavioural goals. Regarding the presence of these two
types of processes, our goal was to keep one of these
resources identical and alter the other to find out how
it affects distinct perceptual and neural dynamics. Using
object categorisation tasks provides an intriguing
opportunity to explore how the task context can affect
object representation processes in the brain and
behaviour.

In the late 1970s, Rosch et al. (1976) developed a the-
ory based on a free-naming experiment that the basic
level is what subjects would naturally name/label an
object. The basic level is defined as the level in which
intermediate abstractions, such as human faces, animal
faces, cars, human bodies, birds, dogs, tables and fruits,
are driven. The subordinate level indicates subdivisions
of basic level categories like individual human faces and
specific breeds of dogs. The superordinate level is
described by the general concepts such as animals. Sev-
eral empirical studies suggest that the relative timing of
visual information processing is linked to specific object
categorisation levels. Seminal work by Rosch and others
(Mervis & Rosch, 1981; Rosch et al., 1976) demonstrated
that humans are faster in object category verification task
at the basic level compared with the superordinate and
subordinate levels. Further, Morris and Murphy (1990)
applied a set of converging operations in the context
of event categorisation and found that basic level
labels provided faster responses. However, in contrast
to the proposed hypothesis, several findings have
challenged the basic level advantage by suggesting that
the superordinate level information has an advantage
compared with the classic basic level entry for object
categorisation (Low et al., 2003; Macé et al, 2009;
Martinovic et al.,, 2008; Prafl et al., 2013; Sugase
et al, 1999; Wu et al, 2015). For instance, Macé
et al. (2009) showed that humans are faster to recognise
an object is an animal than it is a dog. The related litera-
ture demonstrated a long-lasting controversy over the
entry-level of object categorisation.

Several studies attempted to reconcile this contradic-
tion between superordinate and basic level advantage.
Mohan and Arun (2012) found that the similarity among
different object categories and between category mem-
bers can account for categorisation speed. A recent study
(Mack & Palmeri, 2015) examined exposure duration and
category trial context as factors that might explain
the difference in categorisation tasks. Besides, Sofer
et al. (2015) provided a computational-level explanation
for how differences in behavioural responses across
object categorisation tasks could originate from natural
variations in perceptual processes. Using machine-
learning algorithms, they trained classifiers and calcu-
lated quantitative measures by comparing distances
between individual images and categorisation bound-
aries. They suggested that the resulting perceptual
discriminability measure could account for observed
differences in behavioural responses across categorisation
tasks. Thus, the stimulus set’s heterogeneity, task design
and perceptual discriminability may contribute to behav-
ioural differences across categorisation tasks.

Most of these observations considered the speed of
access to categorisation levels by using different image
sets. However, the variations between image sets might
be an alternative explanation for the contradiction of two
advantages or differences between the tasks. Previous
studies showed examples of stimulus sets that can affect
the level of advantage, such as the inbuilt bias toward
mammals or more familiarity with household pets (Wu
et al., 2015). Another possible factor is the homogeneity
of images in one category (for example, motorcycles)
compared to other -categories (Poncet & Fabre-
Thorpe, 2014). These properties, along with other
contributing factors like position, scale, in-plane rotation,
in-depth rotation, occlusion, lighting, background and,
more importantly, different combinations of these vari-
ables, could potentially affect task-related brain response
and behaviour. For example, increasing the difficulty
level in object variations reduces human accuracy and
increases reaction time (RT) (Ghodrati et al., 2014). Prior
studies used a set of images with a planned categorical
structure that could be similarly hierarchically grouped
(Carlson et al., 2013; Cichy et al., 2014). The number and
type of exemplars varied across categories. These
variations in stimuli could result in different behavioural
outcomes. Thus, one way to avoid any impact of stimulus
variations and biases at distinct perceptual levels is to
analyse the same set of images at the superordinate level
and basic level tasks.

Despite such strong evidence that confirmed the
impact of object categorisation tasks on behavioural
responses, it is not fully revealed how task-dependent
information influences brain representations. An
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increasing number of studies argue for contributions of
behavioural goals and task-dependent signals in object
processing by showing the location or timing of task-
related information modulations in the brain (Cukur
et al., 2013; Emadi & Esteky, 2014; Erez & Duncan, 2015;
Harel et al., 2014; Hebart et al., 2018; Karimi-Rouzbahani
et al., 2019; Vaziri-Pashkam & Xu, 2017). For example,
Hebart et al. (2018) described the spatiotemporal
dynamics of task and object processing by performing four
different tasks (two low-level perceptual targets and two
high-level conceptual dimensions) on the same stimuli.
They found that the task information exhibits a late (after
150 ms) top-down modulation on object representations
between low-level perceptual and high-level conceptual
tasks in occipitotemporal and parietal cortex. Groen
et al. (2016) found that tasks alter late visual information
when participants’ attention (full versus reduced atten-
tion) is manipulated. At later time points, the enhanced
attention contributed to the prolonged ERP signatures of
scene processing. Overall, these results suggested that task
information affects the late component of visual informa-
tion. Although these studies provided evidence of the task
effect on brain representations, the role of task informa-
tion over different levels of object categorisation
(suporordinate and basic levels) and corresponding neural
representations remains unclear.

Regarding neural representations of object catego-
ries, Kriegeskorte et al. (2008) found the top level of
distinction between the neural representation of ani-
mate and inanimate objects in the IT cortex. At the
next level, faces and bodies form the subclusters within
animate objects with dedicated regions/modules within
the IT cortex. Subsequently, faces might be separated
into different categories, such as human and animal
faces. Both human and animal faces are primarily
processed within the face regions, and they can be
distinguished only based on a fine-scale separation in
the pattern of neural responses. There are variations
among neural substrates involved in the processing of
different object categories. However, from perceptual
hierarchical abstractions, the animate/inanimate task
takes place at the superordinate level, and both face/
body and human/animal face tasks occur at the
basic level (Dehaqani et al., 2016). Thus, at the
neural dynamics, both animate/inanimate and face/
body tasks rely on the information in macroscopically
distinct neural structures (Kanwisher & Yovel, 2006;
Kanwisher et al., 1997; Downing et al., 2001; Peelen &
Downing, 2005; Schwarzlose et al, 2005), while
human/animal face task relies on information in spe-
cific neural structures for processing faces (Tsao
et al., 2003). Regarding this difference between the
perceptual levels and neural dynamics of object

categorisation, we expected task-related information
associated with these levels in different ways.

In this study, the fixed factor was the bottom-up
information, while the top-down information was altered
across different object categorisation tasks. In these tasks,
subjects were instructed to categorise objects into super-
ordinate categories, basic-animate (basic-A) categories or
basic-face (basic-F) categories. By controlling all input
variations using the same target stimuli within different
tasks, we investigated different perceptual levels
through ‘go/no-go’ visual categorisation tasks. In paral-
lel, electroencephalography (EEG) signals were recorded
to determine how the task-dependent information influ-
ences the human brain response’s temporal and spatial
dynamics based on neural representations of object cate-
gories. Furthermore, we used a passive task to examine
neural representations when participants were exposed
to the same set of target stimuli without a corresponding
behavioural task. Comparing object categorisation tasks
is important but not sufficient, since a similar stimulus
may be encountered when no relevant behavioural task
is available. The differences between passive and three
categorisation tasks may help us identify when task-
related information affects the temporal dynamics of
neural representations. More specifically, at which time-
points, we should expect the presence of task-related
information.

2 | MATERIALS AND METHODS

2.1 | Participants

Twelve volunteers participated in this study (eight males;
10 right-handed; mean age, 25 years; range, 24-27 years).
All participants had normal or corrected to normal vision
and provided written informed consent. The Iran
University of Medical Sciences approved all experimental
protocols.

2.2 | Stimuli

We used coloured object images taken from a set used
in previous studies (Kiani et al.,, 2007; Kriegeskorte
et al., 2008) as well as online sources. The stimuli were
chosen to be as varied as possible and isolated on a grey
background to reduce the scene context influence on
object categorisation. Some sample images from the cate-
gories are shown in Figure 1a. Images were all 175 x 175
pixels sustaining around 7° x 7° of the visual angle. The
selected images consisted of two main categories namely,
‘animate’ and ‘inanimate’, each of which contained
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FIGURE 1 Experimental paradigm. (a) Samples of image sets are used in the experiments. Three categorisation tasks are separated
with vertical lines according to the stimulus category. The target and non-target categories are illustrated above each set of images. The
object categorisation tasks are indicated in colours; blue: superordinate (animate vs. inanimate), green: basic-A (face vs. body), red: basic-F
(animal face vs. human face). (b) Each circle represents an object category. The number of images in each category is mentioned at the
centre, varied according to the category. The dashed circle represents the target stimuli. (c) This section is an illustration of the main
experiment. Each trial started with a fixation cross (with a random variable duration from 300 to 900 ms). Then, a stimulus was presented
for a brief time (26 ms), followed by a blank screen delay of 1300 ms in the first 1000 milliseconds of the blank screen, participants had to
press or release the space bar to indicate the category of the object according to the tasks. The consecutive trials were separated by a variable
interstimulus interval that ranged from 1600 to 2200 ms. (d) This section is an illustration of the passive task. Each trial started with the
presentation of a fixation cross (with a random variable duration from 300 to 900 ms). Then, a stimulus was presented for 26 ms (the
stimulus enclosed by a red frame randomly in 10% of trials), followed by a blank screen delay of 1300 ms. Participants were required to
respond to stimuli held in red frames during the first 1000 ms of the blank screen

192 exemplars (Figure 1b). The animate category 2.3 | Procedure

included human faces, animal faces, human bodies and

animal bodies (48 stimuli in each subset). The inanimate
category included 192 images chosen from natural objects
such as fruits and vegetables and artificial objects like
tools.

Participants sat approximately 57 cm in front of a monitor
(resolution, 800 x 600 pixels; vertical refresh rate, 75 Hz)
in a dimly lit room. We used a set of 24 trials for each
categorisation level, including 12 target trials and 12
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non-target trials, to familiarise participants with the tasks.
The images that we used in these training trials were not
used in the testing trials. The trained participants were
informed about the level of categorisation at the beginning
of each block. When starting a trial, participants had to
keep pressing the keyboard’s spacebar (no-go response). A
white fixation cross spanning 0.76° x 0.76° of the visual
angle was presented (300-900 ms) at the center of the
light grey screen, followed by the stimulus flashed for
26 ms. Participants had to release their fingers from the
pressed key as accurately and as quickly as possible when
the target image was shown. The duration of pressing the
spacebar determined the Go response latency. A maxi-
mum of 1000 ms was allowed to respond, and a response
after that was considered a no-go response. After the
response time window, a blank light grey screen was
shown for 300 ms. Thus, the next trial started after an
intertrial interval of 1600-2200 ms (Figure 1c).

In the passive experiment, participants were asked to
respond to trials in which the images were held in a red
frame (Figure 1d). The red frame was superimposed
on 10% of images randomly. The passive task block
was given before the training phase to prevent
participants from having information about the levels of
categorisation, whereas they performed the other blocks
after training. The order of the blocks was arranged ran-
domly across participants. The participants were not
made aware of the target stimuli.

The experiment consisted of seven blocks of 96 trials
in which the same number of target and non-target
images were randomly distributed. In four blocks, the tar-
get was animate (vs. inanimate); in two blocks, the target
was face (vs. body); and in one block, the target was the
animal face (vs. human face). The passive task, which
had no specified categorisation target, was also presented
in one block of 96 trials. We analysed only 48 animal face
images that were identical in each categorisation level
and the passive task. The animal faces as task-related tar-
gets could be regarded as animal faces (basic-F level), as
faces (basic-A level) or even as animate objects (superor-
dinate level). Each participant completed seven blocks of
96 trials, for a total of 672 trials and 72 training trials.

24 | EEG recordings and preprocessing

Brain electrical activity was recorded from 32 electrodes
(impedance < 5 kQ) mounted in an elastic cap (eWave32,
produced by ScienceBeam; www.sciencebeam.com) and
located at standard positions in accordance with the inter-
national 10-20 systems. Signals were acquired with the
right mastoid reference and the ground electrode placed
along the midline (AFz). The data were digitised at a

sampling rate of 1000 Hz. For the analysis, we used a notch
filter (50 Hz) to remove power-line noise, as well as a band-
pass filter (0.1-100 Hz) to eliminate DC and high-frequency
noise (FIR filter with 6 dB roll-off per octave). We split the
data into 1100 ms trials, starting 100 ms before the onset of
a stimulus and ending 1000 ms after stimulus onset, which
was the maximum allowed response time. Since the
median response times for object categorisation tasks are
less than 600 ms, we consider time points ranging from
—100 to 600 ms following stimulus onset. Each trial was
baseline-corrected to 100 ms pre-stimulus activity. The
common average reference was used to adjust the signal at
each electrode by subtracting the average of all electrodes.

Data were processed using EEGLAB (Delorme &
Makeig, 2004) and ERPLAB (Lopez-Calderon &
Luck, 2014) in Matlab (version 2019b, The Mathworks,
Natick, MA). To remove artefacts, trials in which frontal
electrodes’ voltage changed by more than +75 pV during
the entire period were rejected. Eyeblink artefacts were
excluded from the signals using an independent
component analysis implemented in EEGLAB (runica
algorithm). The artefactual components were selected
using the ADJUST plugin (Mognon et al., 2011). On aver-
age, 1.33 trials were excluded from the analyses per sub-
ject (ranging from one to three trials per subject). All
target trials (i.e., animal face), including incorrect trials,
were included in subsequent analysis. Given the low
number of error (less than 2% of all trials), these would
unlikely affect the results. For the visual presentation,
the waveforms were low-pass filtered at 30 Hz.

Our method of comparing ERP signals between two
conditions was to measure the differences per participant
and then average them across all participants.

2.5 | Brain topographic maps

The maps were generated from the average of ERP volt-
age values across subjects in a condition. The grand
average activities for between-electrode areas were calcu-
lated by an interpolation method implemented in the
EEGLAB. The resulted maps were superimposed on the
scalp. Ten time points were selected to cover the entire
time course. The time points included early ERP compo-
nents (such as P100 and N170) and subsequent time
points after 170 ms from the stimulus onset with the
same time interval (70 ms).

2.6 | Decoding analyses

The multivariate decoding analyses with all 31 electrodes
were performed using the Neural Decoding Toolbox
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(Meyers, 2013). Decoding across all possible pairs of con-
ditions (superordinate, basic-A, basic-F, and passive) was
performed on each subject’s data separately. All six possi-
ble pairs of conditions were decoded to determine
whether at each time point the EEG signals contained
information to distinguish between two conditions with-
out making assumptions about the underlying represen-
tation. The target stimuli were the same in all conditions,
but the task demands were different. Therefore, the
decoding accuracy could be affected by task effects. To
assess the amount of information in the EEG signals, we
trained a linear classifier (Support Vector Machine
[SVM]) (Chang & Lin, 2011) to determine the difference
between conditions in a time-resolved manner. As input
to the classifier, we considered the average in 5-ms non-
overlapping time bins for each electrode. The accuracy
was assessed by leave-one-out cross-validation, where the
classifier was trained on all-but-one exemplar trials per
condition (train on 47 x 2, test 2). The entire decoding
procedure was repeated 100 times for all pair conditions.
Finally, we averaged the decoding accuracy across the
cross-validation splits in each of the 100 runs.

2.7 | Statistical testing

To assess the participants’ accuracy and RTs, we per-
formed repeated-measures ANOVAs (levels of
categorisation) and applied paired t-tests as a post hoc
analysis to determine the relationship between the levels
of object categorisation. All reported t-test p-values were
adjusted using Bonferroni correction (three pairwise
comparisons, p < 0.05/3). The results are given as median
and 25th and 75th percentiles.

At each time point, the difference between event-
related potentials (ERPs) of two conditions was statisti-
cally evaluated using pairwise t-tests and obtaining one
p-value. Then, to correct the results for multiple compari-
sons (31 electrodes x 701 time points), false discovery
rate (FDR) correction was used (Storey, 2002). A p-value
of less than 0.05 was considered significant. To estimate
differences between the two levels, we measured the 95%
confidence intervals at each time point using a non-
parametric bootstrap sampling method in the LIMO tool-
box (Pernet et al., 2011). More specifically, we created
10,000 bootstrapped samples by sampling the partici-
pants’ ERPs with a replacement approach (Efron &
Tibshirani, 1994). We computed the exact difference for
each bootstrap sample as the original data, resulting in
bootstrap estimates of difference amplitudes between two
levels.

To evaluate the significance of EEG decoding signals
(Figures 4c and 5d), at each time point, we performed a

Wilcoxon’s signed-rank test between decoding accuracy
and the permutation-based chance value for all condi-
tions (see Combrisson & Jerbi, 2015). For each time
point, we randomly exchanged the class labels of original
observations and calculated classification accuracy at
each permutation (100 random permutations of labels,
while a permutation-based test with a higher number of
permutations was computationally not feasible). Next,
the accuracy thresholds that correspond to the 99% per-
centile of the distribution (i.e., p < 0.01) were derived,
and these new set of thresholds were used in Wilcoxon’s
signed-rank test. Then, to conduct multiple comparison
corrections by controlling the FDR (220 time points for
5-ms non-overlapping time bins), FDR correction was
applied. A p-value lower than 0.05 was considered statis-
tically significant.

3 | RESULTS
3.1 | Behavioural results
3.1.1 | Effects of task demand on response

time and accuracy

We first investigated the effect of task demand on behav-
ioural outcomes as one of the primary objectives of this
study. Behavioural data revealed that subjects were
highly accurate at all categorisation tasks, and the per-
centage of incorrect responses was very low (on average,
the error rate was 1.6%). The subjects’ mean accuracy
when target images were considered animate was
99.48 £+ 1.29%, if they were seen as an animal face was
98.96 + 1.66% and when they were perceived as a face
was 96.70 + 3.08% (Figure 2a). Despite the relatively
lower accuracy of basic-A (on average about 2.5%) com-
pared with the two other categorisation tasks, this differ-
ence was not statistically significant (F,1) =4.1,
p > 0.05). In contrast, a comparison of the median RTs
for the three types of task demands revealed considerable
differences between them. When target images were cat-
egorised as animate, the RTs were significantly faster
than basic-A level (t;; = 5.8, p = 3.4 x 10~*) and basic-F
level (t;1 = 5.9, p=31x10"% categorisation
(Figure 2b). In addition, the superordinate level versus
the basic level advantage was preserved when we investi-
gated human faces as the target images in these two
categorisation levels (t;; = 3.7, p = 0.009). Moreover, the
median response times of participants at the two basic
levels were similar (¢,; = 1.3, p = 0.6), as were the distri-
butions of RTs (Figure 2b,c). To determine whether re-
exposure to target stimuli would prompt the familiarity
effect, we assessed the RT due to the presentation order



FARZMAHDI T AL.

WILEYLl 7

(a) (b) (c)
100 i £ 550 .
r- 4 - ====superordinate
90 > | [ 3 70 === basic-A
;\: g 500 G g = basic-F
> 80 = 1 u 5550
g X450 | 53
| €
g 70 = H : R -E
< 2 400 o=
60 4 S
© 10
0 350
superordinate basic-A basic-F superordinate  basic-A basic-F 0 200 400 600 800 1000
Reaction time (ms)
(d) (e) ()
g 550 2 550 asso .
% e £ e o
= 500 C 500 > 500 ® e
ks g c e @ o
? od® 3 e 8 )
£ 450 ® o € 450 oo S 450 _
2 o® g @ £ ?
c L
5 400 e @ 5 400 0 400
o ©) o &
1 2 3
> 350" 5350 - 350 -
® 350 400 450 500 550 9 350 400 450 500 550 350 400 450 500 550

basic-A median RT (ms)

FIGURE 2
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basic-A median RT (ms)

Behavioural results. (a) Each boxplot shows the median (filled line), 25th and 75th percentiles (bottom and top of the box)

and whiskers (non-outlier extremes) of accuracy across participants for three object categorisation tasks (one at the superordinate level and
two at the basic levels). (b) Same format as (a) but for the reaction times (RTs) of participants in these tasks. (c) Represents RT distributions
obtained through computing correct go responses within 20-ms time bins across different conditions. (d-f) The median RTs are compared
between the object categorisation tasks. Each dot represents one participant. Blue, green and red colours specify superordinate level, basic-A

level and basic-F level, respectively

in which the stimuli were shown to subjects. There were
no significant differences between RTs in different condi-
tions (all p > 0.19).

The differences between categorisation levels were
not restricted to median RTs. As illustrated in Figure 2c,
the temporal advantage of the superordinate level could
be seen from the earliest responses. The animate RT dis-
tribution was shifted toward lower latencies (i.e., it is
shifted to the left) compared with the face and animal
face responses. The stated effects were observed in a large
majority of participants, as shown in Figure 2d,e. Based
on the median RTs, it can be concluded that participants
reacted faster to animate rather than faces (Figure 2d)
and animal faces (Figure 2e). However, no advantage was
found between the two basic levels due to the scattered
median RTs on either side of the borderline in Figure 2f.

3.2 | ERP results
3.2.1 | Comparison of ERP signals across
object categorisation tasks

We also recorded ERP signals from subjects performing
different categorisation tasks to find out whether the task
demands differentially affect the face-specific N170

component (Eimer, 2011). Results suggested that the neu-
ral modulation occurred during specific time windows
(around 170 and 300 ms) after stimulus onset in different
categorisation tasks. The ERP signals of two selected elec-
trodes, with the largest amplitude around 170 ms after
stimulus onset, are illustrated in Figure 3a. These two
electrodes (i.e., P7 and P8) were situated bilaterally in the
occipitotemporal areas. Furthermore, we assessed the dif-
ferential brain activity between every two tasks by sub-
tracting their ERP signals from each other (Figure 3b-d).
Despite the lack of statistical significance in the differ-
ences between the superordinate and basic-A levels
(Figure 3b) in the selected electrodes, the basic-F level
was substantially different from the other two levels
(Figure 3c,d).

3.2.2 | Effect of task-related information on
neural representations

Since the target images appeared identically across all the
visual object categorisation experiments, task-related
information seems to be responsible for the observed dif-
ferences between levels of categorisation. The advantage
of using identical images in this study was that there
were no differences between the visual information in
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FIGURE 3 Event-related potential signals in object categorisation tasks. Panel (a) illustrates the position of two electrodes, which are
selected based on previous studies to report the N170 component (P7 and P8). The analyses of each electrode’s signals are shown in the
column corresponding to the same electrode. The target stimuli elicit grand-averaged event-related potentials (ERPs) at distinct object
categorisation tasks. Blue, green and red colours specify superordinate level, basic-A level and basic-F level, respectively. (b-d) The
difference of ERP waveforms between categorisation levels. (b) Superordinate level versus basic-A level. (c) Basic-A level versus basic-F level.
(d) Superordinate level versus basic-F level. The shaded areas indicate the 95% confidence interval using the bootstrap method. The colour
bar indicates the colour-coding of p-values, which are obtained from paired t-test (false discovery rate [FDR]-corrected). Responses are
aligned with stimulus onset (time 0), which are shown by vertical dash lines
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low-level features (e.g., spatial frequency composition,
luminance energy, and direction of orientation). Further-
more, this approach eliminated the effect of high-level
transformations that altered the objects’ appearance
(e.g., pose, lighting, and occlusion). Thus, it turns out
that the differences between neural representations are
associated with task demands. However, other possibili-
ties such as the role of face expectation cannot be
completely ruled out due to limitations of the current
experimental design. In the discussion, alternative expla-
nations are explored in detail.

The scalp topographic map was also used to further
investigate differences in brain activities between levels
of categorisation over time. As Figure 4a demonstrated,
the maps were similar between the superordinate and
basic-A levels (Figure 4a, first and second rows) at differ-
ent time points. Nevertheless, the maps of basic-F were
different from those of the other two levels mainly at the
170 ms and after 310 ms post-stimulus time points. There
was a weak negative bilateral occipitotemporal amplitude
for the basic-F level compared with the superordinate
and basic-A levels, coupled with a frontal positivity. In
addition, a pronounced positive activity emerged
after the 310-ms time point across centroparietal sites.
According to these results, task-related information
primarily affected ERP amplitudes.

To assess the neural correlates of object
categorisation, we compared the participants’ ERP sig-
nals for superordinate versus basic-A, basic-A versus
basic-F and superordinate versus basic-F for all electrodes
at each time point (Figure 4b). The p-values were
corrected for multiple comparisons (comparisons across
all electrodes and 701 time points) with a = 0.05. The
electrodes were ordered from occipital to frontal and tem-
poral to central. We found no statistical difference
between the superordinate and basic-A levels after FDR
correction at all electrodes (p > 0.072). However, a signif-
icant difference was found between the basic-F and the
other two levels that could be broadly divided into two
time windows—about 170 ms and roughly after 300 ms
from the stimulus onset.

We applied a multivariate decoding approach to
investigate the multivariate effects of task-related
information. The multivariate decoding methods can
detect differences in brain activities that are lost during
averaging EEG data for univariate analyses (Figure 4c).
Decoding analysis was performed using a linear SVM in
which the classifier was trained to decode the differences
between brain signals in different categorisation tasks
when participants were viewing the identical visual stim-
uli. We then calculated the whole brain average decoding
accuracy across subjects at each time point for three
paired comparisons (Figure 4c). In agreement with the

ERP signals, there was no significant difference in
decoding accuracies between the superordinate and
basic-A levels. However, the decoding accuracies between
the basic-F and two other conditions increased sharply
around 170 ms after stimulus onset, followed by a plateau
after 300 ms, and a gradual decline toward the end. The
significant time points divided into two windows espe-
cially when comparing the basic-F with the superordi-
nate, beginning around 140 to 275 ms and several time
instances beyond 300 ms.

3.2.3 | Comparison of ERP signals in passive
versus object categorisation tasks

This demonstration of task-related neural modulation
leads to a question of how the brain representation of
visual objects during an irrelevant task differs from when
categorising those objects. To address this question, we
conducted a passive experiment in which the same set of
target stimuli was presented to participants. Their atten-
tiveness during this experiment was preserved by an irrel-
evant task (see Section 2). The scalp topographic maps
during the passive task (Figure 4a, bottom row) were dif-
ferent from those in the categorisation tasks specifically
at 170 ms and late time-points (after 310 ms). In line with
this finding, differential ERP signals for passive versus
three categorisation tasks (Figure 5a,c) revealed different
activities mainly emerging at these two specific time win-
dows. Moving from the parietal to the frontal electrodes
resulted in a small delay in the start of these significant
events (Figure 5b). The significant event in the early time
window; however, lasted longer in the frontal areas
(Figure 5b). Decoding accuracy between the object
categorisation tasks and the passive task (Figure 5d) also
yielded peaks at these two specific time windows—
around 170 ms after stimulus onset, followed by a grad-
ual increase roughly after 300 ms.

4 | DISCUSSION

A growing set of studies have investigated the temporal
dynamics of superordinate, basic and subordinate
levels in object categorisation tasks (Bowers And &
Jones, 2008; Grill-Spector & Kanwisher, 2005; Johnson &
Olshausen, 2005; Macé et al.,, 2009; Poncet & Fabre-
Thorpe, 2014; Wu et al., 2015). However, these studies
used a stimulus set which varied in several aspects,
including the number of stimuli per level, the target and
non-target stimuli and some other uncontrolled parame-
ters such as pose, lighting, rotation, occlusion, familiarity
and homogeneity. Variations in stimuli could result in
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FIGURE 4 Event-related potential and decoding results in object categorisation tasks. (a) Group-level topographical maps for object
categorisation and passive tasks over the whole brain. Time series of topographic maps from —100 to 590 ms with respect to the stimulus
onset. (b) Paired t-test p-values for the event-related potential (ERP) differences between object categorisation tasks over all electrodes.
P-values are corrected for multiple comparisons (comparisons across all electrodes and 701 time points). Electrodes are stacked up across the

y-axis, and time is shown across the x-axis. The electrodes’ order is based on their spatial positions from posterior to anterior. From left to

right, the comparison is between superordinate versus basic-A, basic-A versus basic-F and superordinate versus basic-F. The colour bar

indicates p-values. Responses are aligned with stimulus onset (time 0) and indicated by vertical dashed lines. (c) Decoding of differences

between object categorisation tasks over the whole brain. The circles indicate the time points at which the decoding accuracies are

significantly different from the average permutation-based chance level (grey dot-dashed lines). P-values are corrected for multiple
comparisons. The shaded areas indicate the standard error across subjects

different behavioural outcomes. For example, Wu
et al. (2015) showed a bias in saccading toward an object
depending on how it is paired with another object. Partic-
ipants were better at saccading to dogs (or cats) when
paired with birds than saccading to birds when paired

with dogs (or cats). This bias could result from an inbuilt
bias toward mammals or more familiarity with house-
hold pets like dogs and cats. Thus, variations in bottom-
up information could potentially affect task-related
information.
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FIGURE S5

Event-related potential and decoding results of differences between the passive and object categorisation tasks. (a) Group-

level topographical maps for differences between the passive and object categorisation tasks over the whole brain. Time series of topographic

maps from —100 to 590 ms with respect to the stimulus onset. (b) Paired t-test p-values for the event-related potential (ERP) differences

between object categorisation levels and the passive task over all electrodes. P-values are corrected for multiple comparisons (comparisons

across all electrodes and 701 time points). Electrodes are stacked up across the y-axis, and time is shown across the x-axis. The electrodes’

order is based on their spatial positions from posterior to anterior. From left to right, the comparison is between passive versus

superordinate, passive versus basic-A and passive versus basic-F. The colour bar indicates p-values. Responses are aligned with stimulus

onset (time 0) and indicated by vertical dashed lines. (c) Grand-averaged ERPs, along with the difference in ERP waveforms between passive

and categorisation levels. The inset illustrates two electrodes, which are the same as shown in Figure 3 (i.e., P7 and P8 electrodes). The

signals of each electrode are shown in the column corresponding to the same electrode. The shaded areas indicate the 95% confidence

interval using the bootstrap method. The corresponding p-values are reported in (b). Responses are aligned with stimulus onset (time 0),

which are shown by vertical dash lines. (d) Decoding between the passive and object categorisation tasks over the whole brain. The circles

indicate the time points at which the decoding accuracies are significantly different from the average permutation-based chance level

(coloured dot-dashed lines). P-values are corrected for multiple comparisons. The shaded areas indicate the standard error across subjects.

Blue, green and red curves specify the decoding of superordinate, basic-A and basic-F versus passive, respectively

In the current study, we aimed to analyse human
behaviour coupled with EEG recordings to explore the
role of top-down information processing. For this
purpose, we made use of the object categorisation experi-
ments at two levels (i.e., superordinate and basic) while
the target stimuli were kept the same in these tasks. Since
the content and number of stimuli varied across tasks,
one could argue that sensory information did not match
between them. The argument could stand if we examined
the entire stimuli set for each task; however, this study
investigated only a subset of stimuli that was shared
across all the tasks. Furthermore, to minimise the effects
of other stimuli on the target stimuli, we designed the
tasks so that brief presentations were followed by long
interstimulus intervals. Thus, we can conclude that other
stimuli had a negligible impact on our target stimuli.

We also explored the reasons for the differences in
brain signals and behavioural responses across different
kinds of object categorisation tasks. Our findings
suggested that the identical sensory stimuli exhibited dif-
ferent behavioural responses and ERP patterns
depending on the task contexts, indicating that object
categorisation could happen at distinct perceptual and
neural levels. We showed that both face/body and
human/animal face tasks, which belong to the broad
basic level categorisation tasks, were similar at the per-
ceptual levels (RT profile), although they were different
in terms of neural dynamics of object categorisation. A
potential explanation for this finding is that each of the
face and body categories is processed within distinct
regions/modules of the IT cortex. However, both human
and animal faces are processed within face regions, and
only fine-scale differences in the neural patterns could
distinguish between them.

On the other hand, the animate/inanimate task that
belongs to the superordinate level categorisation task

showed different RT profiles compared with the basic
level tasks, although its neural representation (ERP sig-
nals) was similar to the face/body task. Both animate/
inanimate and face/body tasks relied on macroscopic-
level neural structures, while the human/animal face
task relied on finer-scale neural structures. Furthermore,
we provided evidence that the top-down signal could
affect brain responses at particular time windows. The
amplitude of object representations varied depending on
which tasks were compared. The amplitudes of basic-F
ERPs were different from those of the other tasks both
at the early (around 170 ms) and late (over 300 ms)
phases following stimulus onset. Previous studies
demonstrated that the effect of task context on the late
components of the neural signal might reflect different
neural mechanisms. Hebart et al. (2018) performed dif-
ferent tasks on the same stimuli to show the dynamics
of object representation. In addition to the task design
differences, a major difference between our study and
Hebart et al. (2018) is the definition of the task. The
four tasks described by Hebart et al. (2018) target two
low-level perceptual dimensions of images (tilt and
colour) and two high-level conceptual dimensions
(content and size). In addition, no comparison between
the conceptual tasks was reported. However, our study
has set up three distinct conceptual object categorisation
tasks (one superordinate level task and two basic level
tasks) and reported the differences between them. Groen
et al. (2016) reported the late effect of task on scene
processing by manipulating attention. Our results go fur-
ther by providing new evidence about the early (percep-
tual) and late (top-down) effects of task demands on
neural representations of object categories. Task-specific
modulations in both early and late stages of visual
processing are probably originated from a top-down
signal. This signal may enhance task-relevant features
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that can lead to better performance. This interpretation
is in line with the attentional enhancement of
objects’ features in the occipitotemporal cortex (Jehee
et al., 2011). Furthermore, early components can be con-
sidered as a signature of the ‘feedforward sweep’ of
visual information processing (Thorpe et al., 1996). The
top-down signal can change brain representations
that affect feedforward information processing
(Gilbert & Li, 2013). Lack of this signal in the passive
task might be a reason for seeing differences
between the early components of passive and object
categorisation tasks. Overall, our results suggest that
task-related information affects both behavioural and
neural representations.

41 | Superordinate level advantage

Our results revealed the superordinate level advantage
in which the median RT was lower compared with the
median RT in basic levels of object categorisation.
The accuracy was high and very similar across
conditions, suggesting that participants’ accuracy was
not influenced by task-related information. We verified
that the superordinate level advantage occurs even if
participants encounter exactly the same set of stimuli
across different task contexts (Figure 2). The superordi-
nate level advantage has also been reported in previous
studies (Fabre-Thorpe, 2011; Macé et al., 2009; Poncet &
Fabre-Thorpe, 2014; Wu et al., 2015). The superordinate
level advantage was preserved when we analysed
human faces as the target images in the superordinate
and basic-A levels of categorisation. These results sug-
gest that the superordinate level advantage is robust
across different object categories and not the result of
heterogeneity within a particular object category. In
conclusion, animacy is perceived earlier than the face,
regardless of whether it is an animal face or a
human face.

Other potential explanations for the difference
observed in the median RTs between the superordinate
level task and the basic level tasks may be related to task
difficulty, visual attention or motor preparation pro-
cesses. However, the accuracy of subjects in the three
tasks was similar, suggesting that the task difficulty and
visual attention were balanced across tasks. These behav-
ioural trends indicated that different areas of the brain
may be engaged for different categorisation tasks, but it
does not mean one is more difficult than another. In
addition, an identical ‘go/no-go’ paradigm was used in
the three tasks. Thus, it is unlikely that the difference
between median RTs is originated from motor prepara-
tion processes.

4.2 | The difference between object
categorisation and passive viewing

In the absence of any tasks, there might be a default rep-
resentation for the processing of object categories. This
default processing has been emphasised by studies show-
ing that focused attention is not required to process natu-
ral scene categories (Li et al., 2002; Poncet et al., 2012).
Thus, we can assume that the target images in our pas-
sive experiment are processed through access to the
default representation. The ERPs and multivariate
decoding analyses revealed clear signs of task-related
neural modulation during object categorisation tasks
compared with the passive task—though the visual stim-
uli were identical across all these tasks. These significant
effects, from the ERP signal perspective, generally
occurred in two time windows. The earliest time window
started between 200 and 250 ms after the stimulus onset,
though it began as early as 170 ms in some electrodes.
The second significant time window started after 300 ms.
Visually inspecting the topographical maps of the passive
and categorisation tasks (Figure 4a) illustrated differ-
ences at the later time-points, especially after 310 ms
from stimulus onset. These differences may relate to task-
related information in the object categorisation tasks
compared with the passive task. In the passive experi-
ment, participants did not have prior knowledge about
the presented stimuli, which produced much less brain
activity compared with the object categorisation experi-
ments. Task-related information leads to distinct brain
signals during categorisation tasks compared with when
there is no relevant task. These significant differences
can be observed within two main time windows. How-
ever, the exact time points depend on both the electrode
positioning and the type of task to be compared.

It is important to note that the difference at the early
component was more dominant in the frontal electrodes
compared with the occipital ones (Figure 5b), which
could indicate that the modulatory signals are originated
from downstream areas in the frontal lobe. Task-related
neural modulation might be a general phenomenon hap-
pening across many object categorisation tasks. However,
it is also possible that this modulation is weak or
undetectable in some tasks, meaning that the default rep-
resentation would be sufficient for processing of object
categories in those tasks.

4.3 | Repetition suppression and
perceptual expectation effects

One could argue that the main difference between neural
modulations of object categorisation tasks was originated
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from the repetition of face stimuli in our experiments.
When a face is preceded by another face, the absolute
ERP’s amplitude in particular spatiotemporal windows is
reduced (Grill-Spector et al., 2006). However, the repetition
suppression effects could not fully explain our results.
First, despite the fact that all stimuli in the basic-F condi-
tion were from the face category, the target stimuli were
selected from animal faces with a diverse range of shape
geometries (such as birds, monkeys and sheep), appear-
ances and visual transformations, which were randomly
mixed with non-target stimuli. As shown previously, the
repetition suppression effects usually happen when identi-
cal or highly similar human face stimuli are presented suc-
cessively (see Schweinberger & Neumann, 2016 for
review). Second, several studies have shown that the
processing of human faces by humans might be different
from the processing of other species’ faces on face novelty
preference (Pascalis & Bachevalier, 1998) or face
categorisation tasks (Dufour et al., 2004). When we look at
the faces of other species, we process them at the basic cat-
egorical level, and individuation is unlikely relevant for us,
whereas the human faces can be processed at the individ-
ual level (Tanaka, 2001; Tanaka & Taylor, 1991; Haxby &
Gobbini, 2011).

Furthermore, it has been shown that the N170
(or M170) component is strongly modulated by inversion
(or repetition) of human faces but not animal faces
(Haan et al., 2002; Itier et al., 2011; Schweinberger
et al.,, 2007). Thus, the repetition suppression effects
reported for human faces may not be generalised to ani-
mal faces. Finally, there were differences in the task
design between a typical repetition suppression task and
our tasks. In previous studies, the stimulus adaptation
was measured over long stimulus durations and short
interstimulus intervals (e.g., see Kloth et al., 2010;
Kloth & Schweinberger, 2010). In one study, the
stimulus adaptation was measured for three successive
human face stimuli presented briefly (14 ms) (Amihai
et al., 2011). In this study, the interstimulus interval was
short (557 ms), and all the stimuli were presented within
an oval-shaped aperture. However, in our task, a brief
stimulus presentation (26 ms) was followed by a long
interstimulus interval (~2s). This task design in our
experiments could reduce the potential effects of repeti-
tion suppression.

In a control analysis, we investigated the potential
effects of repetition suppression. In the basic-A level task,
we divided the animal face trials into two groups based
on whether the previous trial was face or body. Then, the
ERP signal was computed for these two groups. If our
effects were related to the N170 face adaptation, we
would expect a higher N170 modulation when a face was
presented before an animal face (compared with when a

body was presented before an animal face). However, the
results indicated no significant difference between these
two groups of trials.

Another potential explanation for our findings could
be related to the different perceptual expectations
between the blocks (i.e., the face expectation at the
basic-F level compared with the face/body expectations
at the basic-A level and animate/inanimate expectations
at the superordinate level) (Esterman & Yantis, 2010). As
the expectations’ effects have been reported for different
object categories (Aranda et al., 2010; Puri & Wojciulik,
2008), it is not unreasonable to consider the category
expectation for other objects rather than faces, which
might cancel out each other effects. Besides, Esterman
and Yantis (2010) provided evidence that category expec-
tation facilitated perceptual discrimination. Participants
were faster to categorise faces or houses when the cate-
gory matched with their expectations. If the face expecta-
tion effect could thoroughly explain our findings, we
would anticipate a faster RT in the basic-F condition than
the other two levels. However, our results demonstrated
opposite effects with slower response time for the basic-F
level that support the importance of task demands com-
pared with the category expectation effect. Finally, the
expectation-based modulations of neural activity gener-
ally occur before the stimulus presentation (e.g., in the
form of ‘baseline shift’) (Kastner et al., 1999). Our
reported effects are in specific time windows after stimu-
lus onset when the expectation-related signals have been
largely decayed.

For faces, there seem to be expectations across
basic-A and basic-F categorisation tasks; participants
expect face images in basic-F and face/body images in
basic-A. Thus, if face expectation plays an essential role,
we might see similar patterns in the results. However,
the results do not imply similar patterns. For instance,
the target images of the basic-A and superordinate condi-
tions have similar ERP signals while their face expecta-
tion are different. It is important to note that our results
cannot completely rule out the contribution of perceptual
expectation due to the possibility of its confounding
factor. Our interpretation is that, based on the task
design, stimulus set, behavioural results and brain repre-
sentations, the perceptual expectation and repetition sup-
pression effects might have less essential roles compared
with the task-related information.

Our findings showed that brain representations and
behavioural responses could vary according to the tasks.
Further experiments are required to uncover the mecha-
nisms underlying task-related neural modulations. For
example, in a behavioural experiment, subjects can be
asked to describe a set of identical stimuli with as much
detail and specificity as possible across different task
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contexts. Such an experiment could reveal which visual
object features play an important role according to the
task demand. Neural representations in different task
conditions can also be investigated using deep neural net-
works such as Alexnet (Krizhevsky et al., 2012) and
ResNet (He et al., 2016). For example, deep networks
with various objective functions could be trained on the
same input dataset. By visualising the learned features in
the networks (see Nguyen et al., 2019 for review), one
could investigate which features are important in
different tasks.

5 | CONCLUSIONS

In conclusion, our study highlights the critical role of task-
related information in object categorisation. The behav-
ioural results showed that the participants’s RT was
influenced by task demands; a superordinate level advan-
tage was observed in the RT profiles. The ERP results indi-
cated that the neural modulations in the animate/
inanimate and face/body conditions were similar to each
other but different from the human face/animal face con-
dition. This difference could be related to the nature of
neural representations in these conditions. In both ani-
mate/inanimate and face/body tasks, each category is
processed in a distinct network of cortical areas. However,
human/animal faces are primarily processed within face
areas, and they can be distinguished only based on a fine-
scale separation in the pattern of neural responses. Finally,
the differences between passive and three categorisation
tasks helped us identify the temporal dynamics of task-
related neural modulations. More specifically when we
should expect to see task-related information.
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